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Abstract 

This study was designed to evaluate the physiological and cytological 

responses in liver of GIFT tilapia (Oreochromis niloticus) to acute copper 

exposure. Fish were exposed to three Cu treatments at the following 

concentrations: 0 (control), 1.96 mg/L and 3.92 mg/L, and liver samples were 

collected after 96h of exposure. Observation of oil red O staining showed that 

acute copper exposure increased lipid accumulation in liver, which may due to 

changes of hepatic enzyme activities (malic enzyme, lipoprotein lipase, 

hepatic lipase, fatty acid synthetase, carnitine palmitoyltransferases l) and 

lesions of some organelles such as mitochondria and swollen rough 

endoplasmic reticulum of hepatocytes. This study indicated that acute copper 

exposure induced hepatic lipid metabolic disturbances and damaged hepatic 

organelle in GIFT tilapia.  
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Introduction 

Water pollution has become an important factor that impacts negatively the development 

of aquaculture (Liu et al., 2010). Polluted water in fish ponds usually contains high 

concentrations of heavy metals, such as copper (Cu), which comes from industrial waste 

water, or utilization for pond disinfection (Liu and Yang 2009). Copper is an essential 

trace element and is of benefit to fish for some physiological functions (Watanabe et al., 

1997), however high concentrations of copper usually result in toxic effects on aquatic 

animals (Boyd and Massaut 1999; Liu et al., 2010).  

Histological investigation is an efficient tool to evaluate the effects of toxicants on 

target organs of fish (Capkin et al., 2009). The liver in fish plays an important role in lipid 

metabolism, including both synthesis and degradation of fatty acids. It is also a sensitive 

organ reflecting toxic effects of copper exposure in fish. Many studies have shown that 

copper exposure can induce a variety of histological lesions such as nucleus pyknosis, 

cytoplasmic dissolution, as well as cell necrosis in the liver. Copper exposure disturbs 

lipid metabolism by affecting hepatic enzyme activity (Figueiredo-Fernandes et al., 2007; 

Liu et al., 2010; Chen et al., 2013). Thus, the liver may be an appropriate organ for 

evaluating toxic effects of copper in fish.  

Genetically improved farmed tilapia (GIFT), is popular due to its rapid growth, tasty 

flesh, and high adaptability (Li et al., 2010). However, information about the effects of 

copper exposure, especially the toxic effects on ultrastructure and lipid metabolism in the 

liver of this species is limited. 

The objective of this study was to investigate histological and ultrastructural changes 

as well as several key enzymatic activities in the liver of GIFT tilapia after acute copper 

exposure. 

 

Materials and Methods 

Two experiments examining copper exposure were conducted. One was conducted with 

acute copper toxicity in GIFT tilapia, to determine the median lethal concentration (LC50) 

after 96h, another was conducted to evaluate effects of acute copper exposure on 

histology, ultrastructure, and enzymatic activities related to lipid metabolism in the liver 

of these fish. For both experiments, copper was added as CuSO4. Stock solutions were 

prepared by mixing CuSO4 with distilled water and different test doses were prepared.  

In experiment 1, prior to copper exposure, uniform sized GIFT tilapia (16.8 ± 0.6 g,) 

were collected from a tilapia breeding base (Yingshan, Hubei, China) and acclimated to 

experimental water conditions for 48 h in fiberglass tanks containing 50 L water. In our 

preliminary trials, fish were exposed to 10 different concentrations of copper (0.4, 0.6, 

0.9, 1.35, 2.03, 3.04, 4.56, 6.83, 10.25 and 15.38, mg/L). During the preliminary trials 

fish were not fed during the acclimation and testing period. Fish mortality induced by the 

various concentrations was recorded. Based on the results, a series of concentrations 

were selected for the final acute toxicity trial (0.9, 1.35, 2.03, 3.04, 4.56 and 6.83 

mg/L). 100% mortality occurred in the highest concentration and no mortality occurred 

in the lowest concentration. The control group with no copper added, ran simultaneously 

for all concentrations with 10 fish each for 96 hours. During the 96 h experiment, water 

was aerated continuously and each test solution was renewed daily. Fish mortality was 

monitored at logarithmic time intervals (24, 48, 72 and 96h) of exposure.  

Experiment 2 which ran for 96 h, was designed according to Ahmed et al. (2013) and 

Zheng et al. (2013) with some modifications. The LC50 for fish exposed to three copper 

treatments was 0 (control), 1.96, and 3.92 mg/L, respectively. All treatments were 

carried out in triplicate, with 15 fish per replicate. During the experimental period, water 

was aerated continuously, and each test solution was renewed daily to maintain the 

concentration of the toxicant. During the experimental period, water temperature was 

maintained at 28°C, dissolved oxygen was 6.48 ± 0.3 mg/L, and pH was 7.2.  

At the end of experiment 2, fish from each tank were randomly selected and 

dissected in ice to retrieve the liver. For enzymatic analysis, these were removed with 

sterile forceps and stored at -80ºC for subsequent analysis. For ultrastructural 

observation, livers were diced into 1mm3 pieces, fixed in 2.5% glutaraldehyde solution, 

and prepared for transmission electron microscopic (TEM) analysis. For histological 

observation, the liver samples were sliced into 3 mm thick slabs, fixed in 10% neutral 

buffered formalin, and prepared for histological analysis. For hepatic lipid observation, 

they were frozen in cold anhydrous isopropanol (-85 °C) and maintained at -80°C until 

oil red O staining. 



 Copper induced toxicity in GIFT tilapia 3 

 

For hepatic enzyme analysis, liver samples were homogenized in ice-cold (0.65%) 

physiological saline using a tissue homogenizer. The homogenates were centrifuged for 

15 min at -4°C. Supernatant was used to determine the activities of malic enzyme (ME), 

isocitrate dehydrogenase (ICDH), lipoportein lipase (LPL), hepatic lipase (HL), and fatty 

acid synthetase (FAS). ME activity was determined according to the method described by 

Wise and Ball (1964). ICDH activity was determined according to the method described 

by Bernt and Bergmeyer (1974). LPL and HL activities were determined according to the 

method described by Ballart et al. (2003) and Burgaya et al., (1989). FAS activity was 

measured according to the method of Chang et al. (1967) as modified by Chakrabarty 

and Leveille (1969). Carnitine palmitoyltransferases l (CPT-l) activity was analyzed using 

Elisa CPT-l assay kit for fish (No. ml036411, Mlbio biotechnology Ltd., Shanghai, China). 

All enzyme activities were expressed as mU per mg of soluble protein. Soluble protein 

content of liver homogenates was determined according to the method of Bradford 

(1976) using bovine serum albumin (BSA) as standard.  

Ultrastructural changes were determined according to the method described by 

(Dong et al., 2012) and examined under a FEI Tecnai (G2 F20 S-TWIN, Eindhoven, 

Netherlands) TEM. Liver samples were fixed for 48h in 10% neutral buffered formalin. 

After dehydration in graded concentrations of ethanol, the samples were embedded in 

paraffin. 6 µm thick sections were cut and stained with hematoxylin and eosin, and then 

prepared for light microscopy. Histological changes induced by treatments were 

photographed using photomicroscope (Olympus BX41, Japan). Frozen liver was cut on a 

cryostat microtome, and 8µm liver sections were stained with oil red O staining and 

prepared for light microscopy, according to Spisni et al. (1998).  

Results are presented as mean ± SD. Data were subjected to one-way ANOVA and 

Duncan’s multiple range tests. Difference was considered significant at P < 0.05. All 

statistical analyses were performed using the SPSS 16.0 for Windows (SPSS, Michigan 

Avenue, Chicago, IL, USA). 

 

Results 

The data in Fig. 1 shows the average percentages of the cumulative mortality at different 

concentrations of copper after 96 h of exposure. 20% mortality occurred in 0.9 mg/L of 

copper whereas 30, 50, 70, 80 and 100% mortality were observed in 1.35, 2.03, 3.04, 

4.56 and 6.83 mg/L respectively. The 96 h LC50 value of copper was calculated as 1.96 

mg/L (Fig. 2). 

 

 
Fig.1. Cumulative mortality (%) of GIFT 

tilapia at different concentrations of 
copper after 96 h exposure time. 
 
 
 
 

 
 
 
 

 

 

 

Fig.2. The LC50 value of 

copper in GIFT tilapia after 
96 h exposure was 1.96 
mg/L as determined by 
probit analysis (95% 
confidence limit). 
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Effects of copper exposure on several hepatic enzyme activities are shown in Fig. 3. 

After 96h exposure, FAS and CPT-l activities increased with increasing copper 

concentration and were significantly higher than in the control group (P<0.05). In 

contrast, ME and LPL activities significantly decreased with increasing copper 

concentration (P<0.05). ICDH and HL activities were not significantly different between 

the experimental groups after 96h copper exposure, although HL had an obviously 

decreasing trend (P>0.05).  
 

 
Fig.3. Effect of waterborne copper exposure on several hepatic enzymes activities of GIFT tilapia 
after 96h exposure. Values are expressed as mean±SD (n=3). Different letters indicated significant 
differences between the treatment and control groups. 

 

Compared to the control group (Fig. 4A), oil red O staining indicated extensive lipid 

droplets in livers of fish exposed 1.96mg/L (Fig. 4B) and 3.92 mg/L (Fig. 4C) after 96 h. 

The area of lipid droplets increased in relation to increased copper concentrations. 

 

 
Fig.4. Light micrographs comparing intracellular lipid deposition in liver of GIFT tilapia at different 
treatments of copper for 96h. Control (A), 1.96 mg/L (B), and 3.92 mg/L (C). Lipid was red-colored 
and nucleus-blue colored after staining with oil red O. The depth of color of the red stain and the 
size of the lipid droplets were positively correlated with lipid content. 
 

The hepatic parenchyma of fish exposed to waterborne copper showed hepatocellular 

necrosis and increased vacuolation (Fig. 5B, C), compared to the control group (Fig. 5A). 

In liver sections derived from the control fish, normal nucleus, intact mitochondria, and 

clear stacks of rough endoplasmic reticulum were observed (Fig. 6A). In the group of 

1.96 mg/L copper concentration (Fig. 6B), vacuolated mitochondria (VM) and swollen 

rough endoplasmic reticulum were observed. When copper concentration increased to 

3.92 mg/L (Fig. 6C), vacuolated mitochondria increased and lipid droplets (LDS) were 

observed. 
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Fig.5. Liver histology of GIFT tilapia in control and copper exposed groups. (A) (× 400): Control 
group shows normal hepatocytes (he); (B) (× 400): liver of fish exposed to 1.96 mg/L copper, 
shows necrosis areas (black arrows). (C) (× 400): liver of fish exposed to 3.92 mg/L copper, shows 

a prominent necrosis area (circle) and vacuolation: vacuoles (*) clearly visible as white unstained 
areas within the hepatic cells caused by lipid accumulation.  
 

 
Fig.6. Hepatic ultra-structural changes in GIFT tilapia at different treatments of copper for 96 h 
(2500×). (A) Regular nucleus and sub-cellular organelles of control fish; (B) at 1.96 mg/L 
exposure: presence of vacuolated mitochondria (VM) and swollen rough endoplasmic reticulum 
(SRER); (C) at 3.92 mg/L exposure: presence of extensive lipid droplets (LDS) and abundant VM.  
 

Discussion 

In the present study, after 96h, LC50 of waterborne copper for GIFT tilapia was 1.96 

mg/L, a little higher than results in other tilapia species which were reported to be 1.7 

mg/L (de Vera and Pocsidio 1998), and 1.5 mg/L (Lam et al., 1998). This was obviously 

higher than in freshwater carp which was 0.53 mg/L (Shariff et al., 2001). The difference 

in copper toxicity might be due to the difference in sensitivity to copper which depends 

on the homeostatic regulation of copper (uptake, storage and excretion) in different 

species (Depledge and Rainbow 1990). The results found in this study indicated that GIFT 

tilapia was a more copper-tolerant species.  

The enzymatic activities related to lipid metabolism in the liver were affected by 

copper exposure in this study. Copper exposure decreased LPL and HL activities, which 

were two key enzymes that participated in chylomicron and lipoprotein metabolism in the 

liver (Fielding and Frayn 1998; Mead et al., 2002; Santamarina-Fojo et al., 1998). This 

indicated that copper concentration was related to the derangement of lipid metabolism 

and led to lipid accumulation. Similar results were found in a study on Synechogobius 

hasta after copper exposure (Liu et al., 2010). In the present study, FAS activity, which 

played a key role on de novo fatty acid synthesis (Cowey and Walton 1989), significantly 

increased and further promoted lipid accumulation in the livers of copper-exposed fish. 

ME was related in the catalase production of NADPH, which is the sole hydrogen provider 

in hepatic fatty acid biosynthesis (Wang et al., 2005), and decreased significantly with 

increasing copper concentration. We speculated that decreased ME activity may be a 

physiological response to reduce the lipogenic rate and consequently against lipid 

accumulation in the liver. ME activity decreased but not significantly when there was low 

concentration copper exposure on Synechogobius hasta for 15 days (Chen et al. 2013), 

however, when the exposure period extended to 30 days, ME activity significantly 

increased. This suggests that the effect of copper exposure alone on ME activity not only 

depended on the copper concentration but also on the exposure period. CPT-l is a rate-

limiting enzyme in fatty acids β-oxidation and the key regulatory factor of long-chain 

fatty acid oxidation (Morash et al., 2008). This increased significantly and was different 

than results reported in the study by Chen et al. (2013). This difference may be due to 
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the copper concentration that could damage the organelles differently. In another study, 

low copper concentrations (7.5% and 15% LC50) were selected however the way in which 

these concentrations could damage the organelle were not examined (Chen et al. 2013). 

In the present study, observation of hepatic cell ultrastructure by TEM indicated that high 

copper exposure around twice the LC50 level, induced lesions of mitochondrion. 

Therefore, CPT-l activity in fish increased to enhance transferability of lipids into 

mitochondrion. In our results, we found that acute copper exposure affects hepatic lipid 

metabolic enzyme activities, and comprehensively induces lipid accumulation in the liver. 

This phenomenon was further supported by results of oil red O staining in the liver; the 

results were similar to those reported with other fish species (Liu et al., 2010; Chen et 

al., 2013). 

 Studies concerning ultrastructural changes in the liver of fish after copper exposure, 

are limited. In the present study, the ultrastructure of the liver in copper-exposed fish 

showed various changes; mitochondrial vacuolation was observed in fish exposed to 1.96 

copper. Mitochondria vacuolation, caused by hydrogen peroxide-induced inhibitors, 

disrupts the metabolic rate of hepatocytes due to the insufficient supply of energy 

(Cheville 1994). Further exposure to higher copper concentrations up to 3.92 mg/L 

resulted in accumulative and irreversible damage to the mitochondria and the disruption 

of ATP synthesis (Cheville 1994). Some other changes observed in copper-exposed fish, 

such as swollen rough endoplasmic reticulum, indicated that hepatocytes activated the 

self-defense mechanism, whereas endoplasmic reticulum dilatation indicated that the 

liver was in the process of degeneration (Braunbeck 1998). Similarly, there are many 

studies indicating that waterborne pollutants could cause considerable ultrastructural 

alterations in the liver of other fish species (Li et al., 2004; Li et al., 2007; Liu et al., 

2011).  

For many cells, cellular energy is stored in the form of triacylglycerols with lipid 

droplets that serve as energy storehouses (Farese and Walther 2009). In the present 

study, the lipid droplets in the hepatocyte of copper-exposed fish also increased. On 

some occasions, excessive lipid accumulation may exceed the cell capacity and result in 

dysfunction (Farese and Walther 2009). The lipid droplets observed in the 3.92 mg/L 

copper group in the present study could attribute to the decline in protein synthesis 

accompanying cellular lesion, which blocked the utilization of lipids for lipid, protein 

conjugation (Cheville 1994).  

In conclusion, this study demonstrated that acute exposure to copper led to 

ultrastructural lesions and derangement of lipid metabolism in liver of GIFT tilapia, by 

affecting the hepatic enzyme activities and injuring hepatic organelles.  
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