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Abstract 

The gene for fatty acid binding proteins (I-FABP) in golden pompano 

Trachinotus ovatus larvae was cloned and analyzed from hatch to 18 days-

post hatch (DPH). The I-FABP gene (GenBank accession: MF034871) of 

golden pompano is composed of 815 bp with an open reading frame of 399 

bp, encoded in one amino acid with a molecular weight of 15.24 kDa. The 

predicted amino acid sequence of I-FABP genes from golden pompano showed 

high similarity and identity with Japanese sea bass Lateolabrax japonicus 

(97% and 87.9%, AOW69620.1). The highest tissue expression of I-FABP 

genes was found in the intestine, followed by the eye on 18 DPH. During the 

ontogenetic development, the expression of I-FABP genes remained at a low 

level during the first five days, and reached the highest level on 12 and 18 

DPH. The expression of I-FABP genes was not significantly affected by 

environmental temperature on 12 DPH, but was significantly affected by the 

temperature on 18 DPH. Nutrition enhancement with algae containing high 

fatty acids significantly affected the expression of I-FABP genes. The highest 

expression was observed in the non-enriched treatment, but the lowest 

expression was in the Nannochloropsis feeding treatment. Results of the 

present study indicate that the expression of the I-FABP gene varies with 

environmental temperature and nutritional conditions during the ontogenetic 

development of golden pompano larvae. The expression of I-FABP genes may 

be potentially used as an indicator for assessing nutrient supply and functional 

development of the digestive system in fish larvae. 
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Introduction 
Fatty acid binding proteins (FABPs) belong to a multi-gene family of 14-16 kDa molecular 

mass and bind long chain fatty acids in both vertebrates and invertebrates (Alvite et al., 

2008; Borchers et al., 1989; Kanda et al., 1989). The length of FABPs varies from 126 to 

137 amino acids depending on species (Chen and Shi, 2009; Pelsers et al., 2005; 

Sharma et al., 2004). FABPs can mediate the transportation of free fatty acids for 

targeting specific metabolic pathways, protecting cells from cytotoxic effects of free fatty 

acids, modifying lipid metabolic enzymes, and participating in fatty acid signaling within 

the nucleus (Besnard et al., 2002; Lowe et al., 1987; Storch and McDermott, 2009). 

Different FABP types have been named after the mammalian tissue from which they were 

first isolated, such as intestine, heart, liver, myelin, and adipose tissues. Early studies 

have confirmed that the existence of these FABP types fulfilled specific roles associated 

with the histological structure and physiological functions of different tissues (Banaszak 

et al., 1994; Veerkamp et al., 1991; Veerkamp et al., 1993). 

The intestinal fatty acid-binding protein (I-FABP) is a small cytosolic protein and 

has been considered to play a crucial role in intracellular fatty acid trafficking and 

metabolism in fish gut (Her et al., 2004). Evidence has indicated that the expression of I-

FABP genes is an important marker for intestinal differentiation in humans (Sonnino et 

al., 2000), rats (Likic and Prendergast, 1999), frogs (Chalmers et al., 2000), and fish 

(Pierce et al., 2000). The expression levels of I-FABP genes may be related to the status 

of tissue damage and regeneration (Schroyen et al., 2012; Simula et al., 2010). In 

commercially cultured fish, the I-FABP has been selected as a marker to investigate 

physiological function and response to the nutrition change in fish diets (Overland et al., 

2009; Venold et al., 2013; Yamamoto et al., 2007), but its role in fish larvae is largely 

unknown.  

Golden pompano belongs to the family of Carangidae and is a good candidate 

species for aquaculture owing to fast growth and suitability for cage culture (Ma et al., 

2014). Although artificial breeding and culture of this species have made substantial 

progress, the poor quality of juvenile fish is a major issue hindering further expansion of 

production of this species in hatcheries (Ma et al., 2016b; Zheng et al., 2016). The 

understanding of the ontogeny of the digestive system and nutritional requirement of fish 

larvae may improve management of fish feeding and fingerling quality in the hatchery 

production system. This study aims to quantify the expression of I-FABP genes at 

different water temperatures and feed types in golden pompano larvae from hatching to 

the formation of a functional stomach. The expression pattern of I-FABP genes could 

provide essential information to assess the functional change of the digestive system of 

golden pompano larvae during early ontogeny. In addition, the expression level of I-FABP 

genes may be used as a potential indicator to predict nutrient malformation of fish larvae 

in aquaculture. 

Materials and methods 

Larval rearing of golden pompano. The fish specimens in this study were obtained from a 

previous feeding trial in our laboratory (Ma et al., 2016a) in which fertilized eggs of 

golden pompano hatched in 500L fiberglass incubators at 26.5oC. On 2 DPH, larvae were 

stocked into three 1000L larval rearing tanks, supplied with upwelling filtered seawater 

(5-µm pore size) from the bottom of each tank and a daily exchange rate of 200%. Two 

air stones were used in each tank to maintain dissolved oxygen close to saturation. Light 

intensity was maintained at 2400 lux. The light regime was set at 14 h light and 10 h 

dark. Salinity was maintained at 33 ± 0.8‰, and water temperature was 26.5±1.0oC 

throughout the experiment. Rotifers (Brachionus rotundiformis) were fed to fish larvae 

from 2 DPH to 10 DPH at a density of 10-20 ind/mL. Artemia nauplii were added into the 

rearing tank from 10 DPH until completion of the experiment. Both rotifers and Artemia 

nauplii were enriched with DHA Protein Selco (INVE Aquaculture, Salt Lake City, USA) 

according to the manufacturer’s instructions. 

 Response of I-FABP gene to rearing temperature. Upon arrival, all eggs were 

transferred into 500L incubators and hatched at 26oC. The experimental conditions 

included three constant temperatures, 23, 26, and 29oC with three replicates each. On 2 

DPH, yolk sac larvae were acclimatized at each of these temperatures for 5 h, and 
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stocked in 500L fiberglass tanks at a density of 60 fish/L. Apart from the different rearing 

temperatures, all feeding protocols and rearing conditions were the same as described 

above. 

 Response of I-FABP gene to nutrition manipulation. The current experiment included 

three dietary treatments with three replicates each. Artemia nauplii were nutritionally 

used in three ways: (1) enriched with instant microalgal paste (Nannochloropsis sp., 

Qingdao Hong Bang Biological Technology Co., Ltd, Qingdao, China); (2) enriched with 

Algamac 3080® (Aquafauna, USA); and (3) with no enrichment as control. In the 

experimental diet, the Nannochloropsis enriched diet contained the highest content of 

polyunsaturated fatty acids (49.63 ± 3.78 % of total fatty acids), while the lowest one 

was observed in the non-enriched diet (40.64 ± 4.39 % of total fatty acids) (Yang et al., 

2015). 

 Total RNA extraction and reverse transcription. On 0, 1, 2, 3, 4, 5, 12, and 18 DPH, 

approximately 300 mg (wet weight) fish larvae were sampled from rearing tanks in 

triplicate. Approximately 50 individuals were collected on 12 DPH and 18 DPH to assess 

the effects of temperature and nutrition manipulation. On 18 DPH, a total of 100 

individuals were collected and examined under a dissecting microscope for the analysis of 

gene expression in tissues. Total RNA was extracted using TRIzol (Invitrogen, USA). RNA 

integrity was verified by electrophoresis on a formaldehyde-agarose gel (1.2%). The RNA 

concentration was measured by absorbance at 260 nm and the purity was determined at 

the ratio of absorbance between 260 nm and 280 nm (260/280). RNA was reverse-

transcribed to cDNA with oligo (dT) primers using a PrimeScript first strand cDNA 

synthesis kit (TaKaRa Biotechnology, Dalian Co., Ltd). The cDNA was used as a template 

in subsequent PCR. 

 Cloning of the gene cDNA and real-time PCR. Based on a preliminary study on golden 

pompano transcriptome sequences in our laboratory (Illumina HiSeq2000, annotated by 

NR, KOG, kegg, and Swissprot), the primers for genes cloning were designed with Primer 

5.0 (Premier Biosoft International, Palo Alto, CA, USA) (Table 1). The PCR reaction 

systems included 1 μL of golden pompano larval cDNA, 1 μL of gene-specific forward 

primer (F), 1 μL of gene-specific reverse primer (R), 0.5 μL of ExTaq, 5 μL of PCR buffer, 

4 μL of dNTP mixture (2.5 μM) and 37.5 μL of ddH2O, adding up to a total volume of 50 

μL. The PCR conditions were denaturation at 94oC for 1 min, 35-cycles of 94oC for 30 s, 

annealing temperature of each gene for 30 s, 72oC for 4 min, followed by a 10 min 

extension at 72oC. The PCR products were cloned into the PMD-19T vector (TAKARA, 

Japan), and then sequenced. 
Table 1 Sequences of primers used in this study. 

Primers  Sequence (5’-3’) Amplicon sizes 
(bp) 

I-FABP -F GGCATGGCACAGTTCTT 689 
I-FABP -R CACTTTTCACAGGTTATTAGGT  
I-FABP- qF CGGCTCCTGGAAAATTGATC 111 
I-FABP- qR ATGGTTATCTTGAGGTTGTCGTG  
EF-1α-qF CCCCTTGGTCGTTTTGCC 101 
EF-1α-qR GCCTTGGTTGTCTTTCCGCTA  

 

Quantitative real-time PCR was used to analyze the level of I-FABP gene expression 

in golden pompano larvae. Gene specific primer pairs for the I-FABP gene (Table 1) were 

amplified in the LightCycler480 II system (Roche, Switzerland). EF-1α was used as the 

internal reference and amplified. The cycling conditions for I-FABP genes and EF-1α were 

as follows: 1 min at 95oC, followed by 40-cycles 95oC for 15 s, and 60oC for 1min. 

Dissociation curves were used to guarantee that only one single PCR product was 

amplified in each gene reaction. For each test, three replicates were performed. The 

relative quantification (RQ) was calculated using the ΔΔCT (comparative threshold cycle) 

method: 

ΔCT = CT of target gene - CT of EF-1α,  

ΔΔCT = ΔCT of any sample - ΔCT of calibrator sample.  

The efficiencies of the primers (E) were E I-FABP = 0.1001. 
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 Sequences and phylogenic analysis. The I-FABP gene cDNA sequences were analyzed 

by BLAST at the National Center for Biotechnology Information (NCBI) 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). The complete ORF regions and amino acid 

sequences were deduced with ORF finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html). 

The molecular weight (Mw) and isoelectronic point (pI) of deduced amino acids were 

computed by the pI/Mw tool of ExPASy (http://web.expasy.org/compute_pi/). Protein 

domains were predicted using SMART (http://smart.embl-heidelberg.de/). Multiple 

sequence alignments of amino acids were performed by ClustalX 2.1. The phylogenetic 

tree was constructed by the neighbor-joining (NJ) method in MEGA 6.0, and the 

bootstrap values were replicated 1000 times to derive the confidence value for the 

analysis (Tamura et al., 2013). Pairwise deduced amino acid sequence identity and 

similarity matrices of the I-FABP family sequences from various species were performed 

using Matgat 2.02 (Campanella et al., 2003). The three-dimensional structures of golden 

pompano I-FABP were constructed through homology modelling 

(http://swissmodel.expasy.org/workspace/index.php). 

 Statistical analysis. The data were expressed as mean ± SD, and compared with one-

way ANOVA (PASW Statistics 18.0, Chicago, SPSS Inc.). Tukey’s test was used for 

multiple range comparisons with the level of significant difference set at P < 0.05. All 

data were tested for normality, homogeneity and independence to satisfy the 

assumptions of ANOVA. 
 

Results 
Cloning and sequencing of golden pompano intestinal fatty acid binding protein (I-FABP) 

gene cDNA. The length of I-FABP gene cDNA sequence in the golden pompano (GenBank 

accession: MF034871) was 815 bp with an open reading frame (ORF) of 399 bp, which 

encoded one amino acid (aa) with a calculated molecular weight (Mw) of 15.24 kDa and 

theoretical isoelectric point (pI) of 6.13. The bioinformatics analysis of the deduced 

polypeptide sequence revealed the signature sequence of a cytosolic fatty-acid binding 

protein (Fig. 1). The molecular modelling of golden pompano I-FABP is shown in Fig. 1. 

The golden pompano I-FABP sequence shared 67.94% identity with the rat intestinal 

fatty acid binding protein (PDB ID: 1ifc.1. A). There was one beta sheet, two helixes in 

N-terminal amino acids and 10 anti-parallel beta sheets forming a hydrophobic pocket. 
         1 TGCAAACAGTTCTGCCATTCAAAAAGAATACAGAGTCATTTGGCATGGATTATTGGGCAT 60 

        61 GGCACAGTTCTTTCTATTCAAAACCACTGTGTTGCCCTATCAGCTGCAGTGCTAGATGTT 120 

       121 GCCATGAGAAAATTTGAGCTTTAAACGGCCACATCAGCATTCAGATAGATGACGAGATAA 180 

       181 GAGAGTGTGTGGTTTAAAAGGAGCGGCAGACTTTGAGTAAGACACTCCTTGCTGCAGAGT 240 

       241 TGTCCAGTTCAGCTCCCACCGCCACCatgaccttcaacggctcctggaaaattgatcgca 300 

         1                           M  T  F  N  G  S  W  K  I  D  R  N 12 

       301 atgaaaactatgagaaattcatggaacaaatgggaattaacatggtgaagaggaagctgg 360 

        13   E  N  Y  E  K  F  M  E  Q  M  G  I  N  M  V  K  R  K  L  A 32 

       361 ctgctcacgacaacctcaagataaccattgaacagactggagacaagtttcatgtcaagg 420 

        33   A  H  D  N  L  K  I  T  I  E  Q  T  G  D  K  F  H  V  K  E 52 

       421 agagcagtaatttccgcactctggaaatagacttcaccctgggggtcacctttgagtaca 480 

        53   S  S  N  F  R  T  L  E  I  D  F  T  L  G  V  T  F  E  Y  S 72 

       481 gccttgcagatggaacagaactaacaggctcatggaccattgagggagacatgatgaagg 540 

        73   L  A  D  G  T  E  L  T  G  S  W  T  I  E  G  D  M  M  K  G 92 

       541 gggttttcatcagaaaggacaatggaaagcagctgacaacaaccagaatcattcaaggag 600 

        93   V  F  I  R  K  D  N  G  K  Q  L  T  T  T  R  I  I  Q  G  D 112 

       601 atgaactcgtacagagctacaactatgatggtgtggacgcaaagaggattttcaagaggg 660 

       113   E  L  V  Q  S  Y  N  Y  D  G  V  D  A  K  R  I  F  K  R  G 132 

       661 gttagACCACAAATGTTTGATTACAGGATTACATACAGTATTGTGATAAATCATTGACTT 720 

             *                                                           

       721 ATACCTAATAACCTGTGAAAAGTGCACTTCTTGTAATGCCATATATTTGAATTGCATTGG 780 

       781 ATTTTGATACTTGCAGTAATAAAGTGATACTGTAA                          815 
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Fig. 1 Nucleotide sequence and deduced 
amino acids of the intestinal fatty acid 
binding protein (I-FABP) gene and 

predicted tertiary structure of I-FABP from 
golden pompano Trachinotus ovatus 
(Linnaeus 1758) Cytosolic fatty-acid 

binding proteins signature was underlined.  

  

Multiple sequence alignments and 

phylogenetic analysis. Multiple 

sequence alignment of the deduced 

amino acid sequences of I-FABP genes 

with some known I-FABP family amino 

acid sequences from various species is 

shown in Table 2. The predicted amino 

acid sequence of I-FABP genes from 

golden pompano showed high similarity and identity with Japanese seabass Lateolabrax 

japonicus (97% and 87.9%, AOW69620.1) and large yellow croaker Larimichthys crocea 

(93.2% and 85%, ALP43793.1), but different similarity (82.6-93.9%) and identity (65.2-

82.6%) with other species (Table 2). The phylogenetic tree of hedgehog genes (Ma et el., 

2017) comprised two main clusters, i.e., the fish clusters, and the bird and mammal 

clusters (Fig. 2). The deduced I-FABP amino acid sequences of eight fishes and three 

other vertebrates contained the cytosolic fatty-acid binding proteins signature, and all 

showed high identity and similarity (Fig.3). 
Table 2. Identity and similarity of I-FABP between golden pompano and other species homologue. 

Species Accession NO. 
AA Similarity  

(%) 
 Identity 
 (%) 

Trachinotus ovatus Present study 132   

Lateolabrax japonicus AOW69620.1 132 97 87.9 

Larimichthys crocea ALP43793.1 132 93.2 85 

Oncorhynchus kisutch XP_020352621.1 132 93.9 81.1 

Danio rerio AAF00925.1 132 90.2 82.6 

Cyprinus carpio ADF28554.1 132 90.2 80.3 

Salmo salar ACI66628.1 132 92.4 79.5 

Ictalurus punctatus NP_001187833.1 132 89.4 76.5 

Columba livia NP_001269737.1 132 86.4 75.8 

Columba livia NP_000125.2 132 82.6 65.2 

Mus musculus NP_032006.1 132 82.6 65.9 

Rattus norvegicus NP_032006.1 132 83.3 67.4 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
	

 Trachinotus ovatus	

 Lateolabrax japonicus AOW69620.1	

 Larimichthys crocea ALP43793.1	

 Ictalurus punctatus NP_001187833.1	

 Cyprinus carpio ADF28554.1	

 Danio rerio AAF00925.1	

 Salmo salar ACI66628.1	

 Oncorhynchus kisutch XP_020352621.1	

 Columba livia NP_001269737.1	

 Homo sapiens NP_000125.2	

 Mus musculus NP_032006.1	

 Rattus norvegicus NP_037200.1	99	
94	

100	

64	

96	

51	

42	

99	

42	

0.05	
  

Fig 2. Phylogenetic tree of 
intestinal fatty acid binding 

protein. The numbers represent 

the frequencies with which the 
tree topology presented here 
were replicated after 1000 
bootstrap iterations. 
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Trachinotus ovatus     

MTFNGSWKIDRNENYEKFMEQMGINMVKRKLAAHDNLKITIEQTGDKFHVKESSNFRTLE 60   

Lateolabrax japonicus  

MTFDGNWKIDRSENYEKFMEKMGINMVKRKLAAHDNLKITIEQTGDKFQVKESSKFRTLE 60   

Larimichthys crocea•   

MTFNGTWKVDRNDNYEKFMEKMGINMVKRKLASHDGLKITIEQNGDKFHVKESSNFRTLE 60   

Oncorhynchus kisutch•  

MTYNGTWKVDRSENYEKFMEQMGVNMVKRKLAAHDNLKITLEQTGDKFVVKEASSFRTLD 60   

Danio rerio•           

MTFNGTWKVDRNENYEKFMEQMGVNMVKRKLAAHDNLKITLEQTGDKFNVKEVSTFRTLE 60   

Cyprinus carpio        

MTFNGTWKVDRNENYEKFMEQMGINMVKRKLASHDNLKITLEQTGDQFHVKESSTFRSLE 60   

Salmo salar            

MTYNGTWKVDRSENYEKFMEQMGVNMVKRKLAAHDNLKITLEQTGDKFVVKEASSFRTLD 60   

Ictalurus punctatus    

MAFNGTWKVDRSENYDKFMEQMGINLVKRKLAAHDNLKITLEQNEDTFHVKEVSTFRTLE 60   

Columba livia          

MAFNGTWKIDRNENYEKFMEAMGINVMKRKLGAHDNLKITIQQDGNKFTVKESSNFRTID 60   

Homo sapiens           

MAFDSTWKVDRSENYDKFMEKMGVNIVKRKLAAHDNLKLTITQEGNKFTVKESSTFRNIE 60   

Mus musculus           

MAFDGTWKVDRNENYEKFMEKMGINVMKRKLGAHDNLKLTITQDGNKFTVKESSNFRNID 60   

Rattus norvegicus      

MAFDGTWKVDRNENYEKFMEKMGINVVKRKLGAHDNLKLTITQEGNKFTVKESSNFRNID 60   

Clustal Consensus      *:::..**:**.:**:**** **:*::****.:**.**:*: 

*  : * *** *.**.:: 46   

  

Trachinotus ovatus     

IDFTLGVTFEYSLADGTELTGSWTIEGDMMKGVFIRKDNGKQLTTTRIIQGDELVQSYNY 120  

Lateolabrax japonicus  

IDFTLGVTFEYSLADGTELSGSWNMEGDMLKGIFNRKDNGKQLVTTRIVQGDELIQSYNY 120  

Larimichthys crocea•   

IDFTLGVTFEYSLADGTELSGSWAMEGDMMKGTFNRKDNGKLLTTTRIVQNDELIQSYNY 120  

Oncorhynchus kisutch•  

LEFTLGVTFEYALADGTMLSGSWGMEGDMMKGTFTRKDNGKVLTTTRAIVGEELVQSYSY 120  

Danio rerio•           

INFTLGVTFDYSLADGTELTGSWVIEGDTLKGTFTRKDNGKVLTTVRTIVNGELVQSYSY 120  

Cyprinus carpio        

INFTLGVNFDYSQADGTELTGSWVMEGDMLKGTFTRKDNGKSLITTRKIVGEELVQIYTY 120  

Salmo salar            

MEFTLGVTFEYALADGTMLSGSWGMEGDMMKGTFTRKDNGKVLKTTRAIVGEELVQSYSY 120  

Ictalurus punctatus    

LDFKLGVTFQYSLADGTELSGSWVMEGDVLKGSFIRKDNGKTLTTIRQIVGDELVQSYSY 120  

 

Fig 3. Multiple sequence alignment 

of the deduced amino acid 
sequence of I-FABP with other 
known homologous I-FABP amino 
acid sequence. 
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 Ontogenetic expression of I-FABP gene. The expression level of I-FABP genes in 

golden pompano larvae was low at hatching, but slowly increased with the increase of 

fish age from 0 DPH to 5 DPH (Fig. 4). The expression of I-FABP genes reached the 

highest level on 12 DPH (P < 0.05), and remained at the similar level until the end of the 

experiment on 18 DPH. 

 

 

 

 
Fig. 4. Ontogenetic expression of the I-FABP gene in golden pompano larvae. Data with different 
letters were significantly different (P < 0.05). 

 

 

 Tissue expression of I-FABP gene in golden pompano. On 18 DPH, the highest 

expression of I-FABP gene in golden pompano was observed in the intestine (P < 0.05, 

Fig. 5), followed by in the eye. The expressions of I-FABP genes in the brain, gills, head-

kidney, spleen, and stomach were significantly lower than the expression observed in the 

liver, muscle, and heart (P < 0.05). The expression of I-FABP gene in the muscle and 

heart was not significantly different (P > 0.05). 

 

 
Fig. 5 Tissue expression of I-FABP gene in golden pompano larvae. Data with different letters were 
significantly different (P < 0.05). Abbreviations: Br, Brain; Gi, Gill; Hk, Head-kidney; Mu, Muscle; 

Li, Liver; Sp, Spleen; St, Stomach; In, Intestine; H, Heart; K, Kidney.  

 

 Response of I-FABP genes to water temperature and nutrition manipulation. On 12 

DPH, the expression of I-FABP gene was not significantly affected by rearing temperature 

(P > 0.05, Fig. 6). On 18 DPH, the highest expression of I-FABP gene was found at 29oC 

(P < 0.05), but the expression of I-FABP gene was not significantly different between fish 

cultured at 23oC and 26oC (P > 0.05). The expression of I-FABP gene was significantly 
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affected by nutrition manipulation (P < 0.05, Fig. 7). The highest expression of I-FABP 

gene was observed in the non-enriched group, and lowest expression of I-FABP gene was 

found in the Nannochloropsis enriched group. 

 
Fig. 6 Response of I-FABP gene to water temperature in golden pompano larvae. Data with 
different letters were significantly different (P < 0.05). 

 

 
Fig. 7 Response of I-FABP gene to nutrition manipulation in golden pompano larvae. Data with 
different letters were significantly different (P < 0.05). 

 

Discussion 

In the present study, the I-FABP gene in golden pompano larvae was successfully 

isolated and identified. Similar to the FABP obtained from other species, such a unique 

structure in I-FABP allows it to actively participate in transporting fatty acids and other 

lipid soluble substances within cells (Andre et al., 2000; Hsu and Storch, 1996; Venold et 

al., 2012). 

 Expression of the I-FABP gene during ontogenetic development. In the present study, 

the expression level of I-FABP gene in fish remained at a low level at hatching, but slowly 

increased before 5 DPH. On 12 DPH, the expression of I-FABP sharply increased and 

reached the highest level. This expression pattern is consistent with the development of 

the digestive tract of golden pompano larvae, as the digestive system of golden pompano 

is primitive at hatching, and a functional digestive system appeared around 15 DPH (Ma 

et al., 2014). The expression of I-FABP gene during embryogenesis and early 

development has been reported in zebrafish through in situ hybridization (Andre et al., 

2000; Sharma et al., 2004). To the best of our knowledge, there was no report on the 

expression level of I-FABP gene during early development of fish larvae. In terrestrial 

species such as pigeon, chickens, and turkeys, the expression of I-FABP gene 

significantly increases after hatching (Ding and Lilburn, 2002; Katongole and March, 

1980; Xie et al., 2013), while the expression level of I-FABP gene in mice rises rapidly on 

day 17 during embryonic development (Green et al., 1992). Furthermore, the increase of 

I-FABP over time after hatching may be correlated with the uptake of dietary fatty acids 
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after the formation of a functional digestive tract at the late developmental stage of 

larval golden pompano.  

 Expression of I-FABP gene in different tissues. Although FABPs were originally named 

from the tissue where they were discovered, they are widely expressed proteins, and 

their expressions are species dependent in animal tissues. For instance, the expression of 

I-FABP gene is only observed in the intestinal tissue of humans (Sweetser et al., 1987), 

while the expression of I-FABP gene in zebrafish (Danio rerio) can be detected in 

intestine and brain (Sharma et al., 2004). In Atlantic salmon (Salmo salar), the 

expression of I-FABP gene can be observed in various tissues such as stomach, pyloric 

caeca, intestine, spleen, muscle, and brain (Venold et al., 2013). In the present study, 

the highest expression of I-FABP gene was observed in intestine, followed by the eye, 

and then in the muscle and heart. Furthermore, the expression of I-FABP gene was also 

observed in the stomach of larval golden pompano, but the expression level was lower 

than that reported in Atlantic salmon (Venold et al., 2013). In the present study, the 

expression of I-FABP gene in the eye of larval golden pompano was not previously 

reported in fish, and the functional expression of this gene in the eye may be related to 

vision development but this claim warrants further investigation.  

 Response of I-FABP gene to water temperature. Temperature is an important 

environmental factor in larval fish development, and can significantly affect fish feeding 

behavior and metabolism (Blaxter, 1992; Ma, 2014). Early studies have demonstrated 

that environmental temperature can regulate fatty acid metabolism and composition in 

fish (Farkas et al., 1980; Kemp and Smith, 1970; Skalli et al., 2006). As an important 

fatty acid binding protein in fish, I-FABP plays an essential role in fatty acid absorption 

(Storch and Thumser, 2010). However, it is unclear if temperature can affect the 

expression of I-FABP gene during the early development of fish larvae. In this study, the 

expression of I-FABP gene was not significantly affected by water temperature on 12 

DPH, but was significantly affected by temperature on 18 DPH. Such difference may 

reflect the developmental stage of the digestive system in larval golden pompano as the 

functional stomach did not appear until 18 DPH. 

 Response of I-FABP gene to nutrition enhancement. Fatty acid binding proteins can 

affect gene regulation, leading to up-regulation of lipid related genes via activation of the 

peroxisome proliferating receptor (Lawrence et al., 2000; Tan et al., 2002). In Atlantic 

salmon, the expression level of I-FABP genes reduced when fish were fed with soybean 

meal (Venold et al., 2013). The reduction of the expression level of I-FABP gene is 

related to inflammation in the distal intestine of Atlantic salmon due to inclusion of 

soybean meal in the diet and is a sign of functional loss for the ability to bind dietary 

fatty acids (Venold et al., 2013). In the present study, the expression of I-FABP gene was 

significantly affected by nutrition enhancement. The highest expression of I-FABP gene 

was observed in the non-enriched feeding group, and the lowest expression was found in 

the Nannochloropsis enriched group. This expression pattern is inversely proportional to 

the total amount of polyunsaturated fatty acids in the diet. In the experimental diet, the 

Nannochloropsis enriched diet contained a higher content of polyunsaturated fatty acids 

than the non-enriched diet (Yang et al., 2015). This may suggest that the total poly 

unsaturated fatty acid in the diet has a negative effect on the expression of I-FABP gene 

in golden pompano larvae. However, there is no direct evidence to prove it, and this may 

need further investigation. 

In summary, the I-FABP cDNA was cloned and analyzed in golden pompano larvae in 

this study. The expression of I-FABP gene in golden pompano larvae was significantly 

affected by water temperature and fatty acid content in the feed when the functional 

stomach formed on 18 DPH. The time dependent expression of I-FABP gene in fish larvae 

is important to understand the ontogenetic development and growth of fish larvae in 

early life. The monitoring of I-FABP gene expression in golden pompano larvae may serve 

as a useful indicator in the field and on fish farms, leading to a rapid assessment of 

environmental conditions and nutrition impact on fish development. 
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