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Abstract 

This study was conducted to evaluate the effects of biofloc on the species and quantity of 

plankton in pond water. There were four treatments in the experiment: the control, no 

supplementation; treatment I, pond water supplemented with glucose; treatment II, 

pond water supplemented with both glucose and Bacillus subtilis; and treatment III, 

pond water supplemented with Bacillus subtilis only. Water quality, plankton, and biofloc 

formation were monitored every five days. Results showed that biofloc formation was 

enhanced by adding glucose to the pond water. The addition of glucose together with 

Bacillus subtilis shortened the formation time of mature bioflocs by about five days than 

the supplementation with glucose only. In ponds supplemented with glucose and those 

supplemented with glucose + bacillus, the ammonia nitrogen, and nitrite nitrogen 

content in the water column decreased, and the number of cyanobacteria and green 

algae were significantly inhibited, while the number of zooplankton such as Rotatoria 

increased during the experimental period. 
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Introduction 
Aquaculture is an important food industry that needs to be developed in environmentally 

sustainable systems. Aquaculture production provides a reliable food source but its rapid 

expansion sometimes has a negative impact on natural environments. Previous studies 

have focused mainly on treatments of dissolved waste such as ammonium and nitrite 

(Neori et al., 2004). In recent years a new type of environmentally friendly Biofloc 

technology (BFT) has emerged, and is being currently used in aquaculture. 

The BFT system is based on minimal effluent discharges thereby protecting 

surrounding water resources and improving farm biosecurity (Burford et al. 2003; 

Avnimelech, 2007). This system not only effectively controls water quality but also 

provides a sustainable, intensive and healthy environment for aquatic animals in culture. 

(Stokstad, 2010). The system is based on the principle of assimilation of excreted 

dissolved nitrogen by heterotrophic bacteria, and management of the C/N ratio in the 

water (Avnimelech, 1999). Previous studies on BFT in aquaculture have concentrated on 

shrimp and tilapia farming (Ray et al., 2017).  

In this study, glucose and Bacillus subtilis were added, individually and in 

combination, to the culture water to enhance the process of biological flocculation, 

plankton species, and the dynamics of biofloc formation. Our work provides a theoretical 

basis for further studies on biological flocculation. 
 

Materials and methods 

Experimental design. The 40 day experiment was conducted in 12 indoor fiberglass 

aquaria (80 cm × 60 cm × 50 cm) with a water volume of 200 L each. Four treatments   

were compared (Table 1): Treatment I (T1) water supplemented with glucose only; 

treatment II (T2) water supplemented with glucose and Bacillus subtilis; treatment III 

(T3) water supplemented with Bacillus subtilis, and the control (C) which had no added 

supplements. All aquaria were the same size, and each treatment was replicated three 

times. The amount of glucose and Bacillus subtilis added were the same in both 

treatments. The amount of glucose added was calculated based on Avnimelech (1999) 

and the carbon and nitrogen ratio was 20:1. The number of Bacillus subtilis added was 

109 CFU/L. During the entire experimental period, water was maintained at 25 ± 0.5°C, 

and was continuously aerated; photoperiod was 12 h light/12 h dark. All aquaria received 

adequate fresh water to compensate for water loss. 
Table 1. The changes of the water quality index in all aquaria during the experimental period. Values are 
means (±S.D.) of three replicate aquariums per sampling time in each treatment.  

    Sampling time（day） 

  1 5 10 15 20 25 30 35 40 

DO 

I 8.58±0.11 7.82±0.10 7.05±0.08 6.43±0.10 5.61±0.07 5.77±0.08 5.93±0.09 5.84±0.08 6.06±0.07 

II 8.61±0.09 7.33±0.05 6.12±0.06 5.23±0.13* 5.57±0.08 5.64±0.07 5.83±0.11 5.95±0.07 5.82±0.10 

III 8.62±0.12 8.15±0.07 8.09±0.08 8.18±0.07 8.24±0.10 8.31±0.11 8.38±0.08 8.49±0.05 8.48±0.12 

control 8.57±0.11 8.45±0.04 8.33±0.05 8.46±0.09 8.42±0.08 8.43±0.06 8.51±0.12 8.50±0.11 8.49±0.09 

pH 

I 7.38±0.02 7.16±0.06 7.05±0.04 6.82±0.01 6.77±0.03 6.85±0.05 6.89±0.04 6.80±0.02 6.85±0.01 

II 7.36±0.01 7.03±0.03 6.74±0.05 6.61±0.05 6.77±0.04 6.93±0.03 6.95±0.03 6.91±0.02 7.03±0.06 

 III 7.38±0.01 7.21±0.02 7.14±0.03 7.15±0.01 7.24±0.02 7.26±0.02 7.19±0.03 7.18±0.05 7.23±0.04 

control 7.37±0.02 7.35±0.03 7.23±0.03 7.28±0.02 7.25±0.04 7.27±0.03 7.21±0.02 7.18±0.03 7.18±0.03 

NO2-N 

I 0.22±0.01 0.24±0.01 0.27±0.01 0.19±0.01 0.08±0.01* 0.07±0.01* 0.06±0.01* 0.04±0.01* 0.06±0.01* 

II 0.22±0.01 0.26±0.01 0.19±0.01 0.06±0.01* 0.06±0.01* 0.06±0.01* 0.04±0.01* 0.05±0.01* 0.05±0.01* 

III 0.21±0.01 0.20±0.01 0.18±0.01 0.19±0.01 0.16±0.01 0.16±0.01 0.14±0.01 0.13±0.01 0.13±0.01 

control 0.22±0.01 0.22±0.01 0.23±0.01 0.21±0.01 0.180±0.01 0.17±0.01 0.16±0.01 0.14±0.01 0.16±0.01 

NO3--N 

I 1.26±0.13 1.49±0.12 1.72±0.10 2.89±0.09* 2.51±0.11* 2.75±0.08* 2.39±0.11* 2.16±0.09* 2.21±0.07* 

II 1.25±0.10 1.57±0.11 1.85±0.13 2.32±0.10* 2.14±0.09* 1.91±0.11 2.01±0.09 1.83±0.08 1.29±0.10 

III 1.24±0.12 1.22±0.09 1.01±0.11 1.07±0.08 1.11±0.09 1.15±0.10 1.47±0.07 1.52±0.09 1.36±0.08 

control 1.25±0.12 1.23±0.13 1.33±0.09 1.23±0.11 1.36±0.10 1.38±0.08 1.31±0.09 1.24±0.10 1.19±0.11 

NH4--N 

I 0.64±0.03 0.67±0.02 0.52±0.02 0.45±0.03 0.23±0.02* 0.18±0.03* 0.21±0.01* 0.13±0.02* 0.14±0.02* 

II 0.64±0.01 0.58±0.01 0.41±0.02 0.32±0.01 0.20±0.03* 0.11±0.02* 0.14±0.03* 0.11±0.01* 0.13±0.02* 

III 0.62±0.03 0.59±0.02 0.53±0.03 0.47±0.02 0.41±0.01 0.45±0.02 0.42±0.01 0.44±0.02 0.41±0.03 

control 0.65±0.02 0.64±0.03 0.59±0.01 0.54±0.02 0.53±0.02 0.48±0.01 0.55±0.02 0.51±0.03 0.50±0.01 

 Treatment I (T1)：Glucose addition；Treatment II (T2)：Glucose+Bacillus addition；Treatment III (T3)：Bacillus 
addition. Different superscript symbols (*) denote significant differences (p＜0.05) within T1，T2, T3 and the control. 
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Assessments of water quality. Throughout the 40-day experimental period, water 

temperature and pH were measured daily at 08:30–09:30 AM with a thermometer and 

pH meter respectively. Water samples were collected from each aquarium every 5 days, 

and dissolved oxygen (DO), ammonia-N (NH4
+-N), nitrite-N (NO2

--N) and nitrate-N (NO3
--

N) were analyzed spectrophotometrically immediately after each sample collection, as 

described in APHA (1998). 

Assessment of microorganisms: Bacterial load in the aquaria water was analyzed 

every five days between 08:30 and 09:30 AM. All samples were collected from 5 different 

locations, mixed thoroughly, transferred to sterile glass bottles and preserved with 

borate-buffered formalin (4% v/v) (Thompson, Abreu & Wasielesky 2002). One milliliter 

water sample was transferred with a sterile pipette to a test tube containing 9.0 mL of 

phosphate buffered saline (PBS). The tubes were then shaken thoroughly and 5.0g 

sediment, or periphyton samples were weighed and transferred to sterile conical flasks, 

made up to 50 mL with PBS, and the contents mixed thoroughly to prepare a stock 

solution. Serial dilution of up to 106 for water and 109 for sediment and periphyton 

respectively were prepared with PBS. 0.1 ml of each dilution was spread over the surface 

of duplicate plates of tryptone soya agar and incubated at 30°C for 24-48 h. Plates with 

30–300 colony forming units (CFU) were counted with a Xun Shu Colony Counter and 

expressed as CFU. Counts were made from 30 fields chosen at random. Free-living 

bacteria in the water column and attached bacteria on the various substrates in the 

aquaria (i.e. organic and inorganic particles, etc.) were quantified. Fifteen random floc 

size measures were made once every 5 days. 

Assessment of the amount of biofloc formation. Water samples were collected from 

each aquarium every 5 days to quantify the biofloc volume (BFV). Sampling 1000 mL 

water determined total suspended solids (TSS) and biofloc volume (BFV) into a series of 

Imhoff cones. The volume of the biofloc plug accumulated on the bottom of the cone was 

also determined (Avnimelech and Kochba, 2009; Xu and Pan, 2012). Suspended biofloc 

in biofloc-based aquaria were collected using sterile pipets, and a Nikon inverted 

microscope revealed the morphological structure of the biofloc. On the last day of the 

experiment, the biofloc produced in the aquaria was collected. 

Assessment of the plankton: Plankton samples were collected every 5 days by 

pooling 1000 mL of water from five different locations in each aquarium and passing 

them through a 45 μm mesh plankton net. The concentrated samples were preserved in 

small plastic bottles with 5% buffered formalin. Qualitative and quantitative estimations 

of plankton were made using a Sedgewick–Rafter (S–R) cell containing 1000 fields of 1 

mm3. A 1 ml sample was put in the S-R cell and left undisturbed for 15 min to allow 

plankton to settle. The plankton in 10 randomly selected cells were identified to genus 

level and counted under a binocular microscope (Swift, M-4000). Planktons were 

identified using keys by Ward and Whipple (1959), Prescott (1962), Belcher and Swale 

(1976), and Bellinger (1992). Current taxonomic names [http://www.algaebase.org/ 

(accessed March, 2011)] of phytoplankton were used. Phytoplankton abundance was 

reported as natural units per liter. Plankton abundance was calculated using the following 

formula: 

N = (P × C × 100) / L 

Where N=the number of plankton cells or units per liter of original water;  

P= the average number of plankton counted in 10 fields; the  

C= the volume of concentrates (mL);  

L=the volume (L) of the pond water sample. 

Statistical analysis. All statistical analyses were performed with SPSS17.0 software. 

The differences in water quality and the abundance of plankton were considered 

significant when P < 0.05. One way ANOVA was used to determine the significance of 

each parameter among different treatments. 
 

Results  

Physicochemical variables and assessment of microorganisms. During the experimental 

period, water temperature in all aquaria was maintained at 25 ± 0.5°C; the changes of 

DO and pH appear in Table 1. The contents of DO in the T1 and the T2 increased slowly 
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after a rapid decline, but there were no obvious differences between T3 and the control. 

DO in the T2 reached a minimum (5.23 ± 0.17mg/L) on day 15. The decrease rate was 

significantly higher than in T2 (P<0.05) and T1. Variation in trends of pH were similar to 

those of DO in all aquaria. The pH which ranged between 6.5-7.5 was not different than 

in T3 and the control (P>0.05). 

Nitrite NO2
--N in T1 and T2 showed similar trends; it first increased and then 

decreased. In T2 it increased rapidly and after day 15 it decreased. NO2--N concentration 

in T1 reached a peak (0.53 ± 0.05 mg/L) on day 10 and decreased from day 10 to day 

20, after which it began to decrease slowly and reached 0.11 ± 0.01 mg/L on day 40. 

NO2--N concentrations in T3 and control group decreased slowly during the experiment 

and were significantly higher (P<0.05) than those in the T1 and T2 after day 20. At the 

end of the experiment, NO2--N levels in T1, T2, T3 and control decreased by 79.07%, 

74.42%, 38.10%, and 29.55%, respectively. Removal rates of NO2--N in T1 and T2 were 

significantly higher (P<0.05) than those in T3 and control group.  

Levels of nitrate nitrogen in T1 and T2 first increased and then decreased, while 

those of NH4
+-N in T3 and control group fluctuated within a small range (Tab.1). In T1 

and T2 they reached a peak of 2.89 ± 0.11 mg/L, 2.32 ± 0.08 mg/L, respectively. At the 

end of the experiment, the level of NO3
--N in T2 was significantly higher (P<0.05) than in 

the T1, T3 and the control group, but not significantly different than T1, T3, and the 

control group. The trend of NH4
+-N in each treatment (except for T1) was similar and 

decreased slowly. NH4
+-N level in T1 first reached a peak (0.67 ± 0.06 mg/L) that 

appeared on day 5 but in T1, T2, T3 and in the control group it decreased by 78.12%, 

79.69%, 33.87% and 23.08%, respectively. The contents of NH4
+-N in T1 and T2 were 

significantly different (P<0.05) from those of T3 and the control group. 

 
Fig1. The number of total cultivable microbes in all aquaria during the experimental period. Values 
are means (±S.D.) of three replicate aquariums per sampling time in each treatment. 

 

The changes of total cultivable microbes are shown in fig. 1. These were significantly 

smaller than those of the experimental groups. During the first 15 days of the 

experiment, total cultivable microbes in the treatment groups increased and were faster 

than in T1 and T2 when compared to T3. On day 15, the number of total cultivable 

microbes in the treatment groups reached peaks of 2.036×1010 cfu/L, 2.308×1010 cfu/L 

and 9.88×109 cfu/L, respectively. The content of total cultivable microbes continuously 

decreased from day 15 to day 30, and there was little change in those of T1 and T2 after 

day 30. At the end of the experiment, the number of total cultivable microbes in the 

treatment groups was higher than in the control. The difference between T1 and T2 was 

not detectable. 

The total TSS and BFV in all treatments over time are shown in Fig.2 and Fig.3. Both 

TSS and BFV levels increased gradually throughout the experimental period, and their 

averages in T1 and T2 were around 510 mg/L and 55 ml/L on day 40, respectively. 

However, both TSS and BFV levels were always very low in T3, and in the control they 

did not exceed 65.50 mg/L and 6.10 ml/L, respectively.  
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Fig 2. The change of the TSS in all aquaria during the experimental period. Values are means 
(±S.D.) of three replicate aquariums per sampling time in each treatment.  At the same time 
different superscript symbols（*）(p＜0.05) denote significant differences within the treatments.  

 
 

 
Fig 3. The change of the BFV in all aquaria during the experimental period. 
 

The color of the biofloc sampled from the treatment aquaria was brown and of irregular 

structure and size (Fig. 4). When observed microscopically, the structure of the biological 

flocculation group changed from simple to complex, and the flocculation was composed 

of heterotrophic microorganisms, phytoplankton, zooplankton, and other species.  
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Fig 4. The microstructure of biofloc in different periods during the experimental period 
 Changes in the abundance of plankton. Prior to the addition of the pond water to the 

experimental aquaria, a microscopic evaluation of the pond water was performed which 

revealed the presence of several species of phytoplankton and zooplankton. The major 

categories of phytoplankton included Cyanobacteria, Chlorophyta, Euglenophyta and 

Cryptophyta. The major categories of the observed zooplankton were Protozoan, Rotifer, 

Cladocera and Copepods. The total density of phytoplankton in all aquaria is shown in 

Fig. 5 and the abundance of Cyanobacteria and Chlorophyta in Fig. 6 and Fig. 7, 

respectively.  

 
Fig 5.  The total abundance of phytoplankton in all aquaria during the experimental period. 
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Fig 6. The total abundance of cyanobacteria in all aquaria during the experimental period. Values 
are means (±S.D.) of three replicate aquaria per sampling time in each treatment 
 

 
Fig.7. The total abundance of chlorophyta in all aquaria during the experimental period. Values are 

means (±S.D.) of three replicate aquaria per sampling time in each treatment. 

 

On day 5, the abundance of phytoplankton in the T2 and control group reached the peak 

5.560 × 105 ind/L and 4.485 × 105 ind/L, respectively. After day 15, total abundance of 

phytoplankton in all aquaria (except for the control group) began to decrease. At the end 

of the experiment, phytoplankton in the treatment groups and in the control, reached 

5.743×104 ind/L, 8.121×104 ind/L, 1.363×105 ind/L and 1.766×105 ind/L, respectively. 

The number of total plankton in T1 and T2 was significantly lower (P<0.05) than in T3 

and the control group. The number of Cyanobacteria in the experiment is shown in Fig. 6. 

In the first 15 days of the experiment, the number of cyanobacteria in each group 

increased significantly, and the rate of increase in T1 and T2 was significantly higher 

(P<0.05) than in the other groups. After 15 days, the number of cyanobacteria in T1 and 

T2 rapidly decreased and was reduced to 2.434×104 ind/L, 5.312×104 ind/L at the end of 

the experiment. The number of cyanobacteria in T3 and in the control group at the end of 

the experiment was 1.215×105 ind/L and 1.388×105 ind/L, respectively, and significantly 

higher (P<0.05) than in the T1 and T2. The number of green algae in treatment groups 

and control group first increased and then decreased (Fig 8). The number of green algae 

in T1 and T2 reached peaks of 1.623×105 ind/L and 7.911×104 ind/L on day 15, 

respectively, while the T3 and control group reached the maximum on day 5 and day 10, 

with a maximum value of 1.235×105 ind/L and 1.537×105 ind/L. After day 15, the 

number of green algae in all aquaria decreased in the treatment groups and were less 

than 1.2×104 ind/L, compared to the control which reached 2.817 ×104 ind/L, and was 

significantly higher (P<0.05) than the treatment groups. 
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Fig 8. The abundance of protozoan in all aquaria during the experimental period. Values are 

means (±S.D.) of three replicate aquaria per sampling time in each treatment. 
 

The abundance of zooplankton appears in Fig 8-11. The number of protozoa in each 

group first increased and then decreased. In T1, T3 and the control group they reached a 

maximum on day 10 and in T2 on day 15 (Fig 8). The number of protozoa in T1 and T2 

was significantly higher (P<0.05) than that in the T3 and control group from day 5 to day 

25. At the end of the experiment, the number of protozoa in T2 was significantly higher 

(P<0.05) than that of the other groups.  

 
Fig 9. The abundance of Rotatoria in all aquaria during the experimental period. Values are means 
(±S.D.) of three replicate aquaria per sampling time in each treatment. 

 
Fig10. The abundance of copepods in all aquaria during the experimental period. Values are means 

(±S.D.) of three replicate aquaria per sampling time in each treatment. 
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Fig 11.The abundance of cladocera in all aquaria during the experimental period. Values are 

means (±S.D.) of three replicate aquaria per sampling time in each treatment. 

The changes of the number of rotifers in all aquaria during the experimental 

period appear in Fig 9. T1 and T2 exhibited a rising trend. On the other hand, the 

number of rotifers in T3 and the control group decreased. At the end of the experiment, 

the number of rotifers in T1 was the greatest and in the control group was the least. 

There was no significant difference (P>0.05) between the T3 and control group. There 

was a significant difference in the number of rotifers in T1 and T2 compared with other 

groups (P<0.05). The number of copepods in T1 and T2 showed an upward trend and in 

T3 and the control group it decreased (Fig 10). There was no significant difference 

(P>0.05) in the number of copepods between T3 and the control. After day 10, the 

number of copepods in the T1 and T2 was significantly higher (P<0.05) than in T3 and 

the control. The number of copepods in T1, T2, T3 and control group was 618 unit/L, 594 

unit/L, 191 unit/L and 172 unit/L respectively. The number of cladocera is shown in Fig 

11. Their numbers in T1 and T2 first increased and then decreased, while in T3 and the 

control group they decreased slowly. In T1 they reached a maximum (168 unit/L) on day 

25, and in T2 (194 unit/L) on day 20. By day 40, the numbers of cladocera in T1, T2, T3 

and control group were 83 unit/L, 68 unit/L, 6 unit/L and 8 unit/L, respectively. 
 

Discussion 

In the current study, the level of DO and pH values in T1 and the T2 groups were lower 

than that in the T3 and control group. The lower levels of DO and pH values were 

possibly a result of the glucose addition that was consumed by a large number of 

microorganisms (heterotrophic community), resulting in rapid growth and high 

respiration rates. Similar results were observed by Tacon et al. (2002) and Wasielesky et 

al. (2006). Similarly, a decrease in pH during the chemolithotrophic nitrification process 

as a result of CaCO3 consumption and the release of CO2 and H+ into the culture medium 

was reported (Chen et al. 2006; Ebeling et al. 2006; and Rijn et al. 2006). There was no 

significant difference in the content of DO in T3 and the control group suggesting that the 
addition of Bacillus subtilis had no significant effect on the DO levels.  

Ammonia and nitrite are highly toxic to aquatic animals, though their toxicity is 

species specific and depends on water characteristics and the duration of exposure 

(Tomasso, 1994; Hargreaves 1998; Barajas et al., 2006; Mishra et al., 2008). In general, 

when the concentration of ammonia nitrogen in aquaculture water column is greater than 

1 mg/L, and NO2--N concentration reaches about 10 mg/L, the aquatic animals are 

stressed. When the carbon and nitrogen ratio is 10 in the   water, the microbial biomass 

attached to the biofloc is assimilated and absorbed at a rate of 0.2 g per square meter 

(Azim et al. 2008). In our study, the carbon and nitrogen ratio in the T1 and the T2 was 

20, which was twice that reported by Azim (2008). The contents of ammonia nitrogen 

and NO2
-
-N in T1 and T2 were lower than those in T3 and control group after day 15. 

This result suggests that the input of glucose in T1 and T2 enhanced the accumulation of 

particulate organic matter in the aquaria in these treatments, and C:N ratio was 20:1 

and efficiently converted the NO2
-
-N into microbial protein (Avnimelech, 1999). 

Nevertheless, the levels of ammonia and nitrite observed in this study were below lethal 

levels. Biofloc systems may enhance the production of dense microbial communities that 
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affect the amount of ammonia released by the cultivated organisms (Avnimelech (1999). 

Ammonia can be absorbed by micro-algae, by heterotrophic bacteria, or can be 

transformed by nitrifying bacteria (Ebeling et al., 2006). The growth of these organisms 

appears in the form of biofloc (De Schryver et al., 2008). This result indicates that the 

addition of glucose to the cultivation of biofloc effectively reduces the content of NH4
+-N 

and NO2--N in the culture water. 

Our results confirmed that adding glucose to the water column significantly promotes 

the growth of heterotrophic microorganisms. In biofloc systems, carbohydrate addition 

promotes the development of diverse and balanced microbial communities (Haslun et al., 

2012). These active and dense microorganisms together with suspended organic particles 

form bioflocs, which are a natural food source consumed by animals in culture (Burford 

et al., 2004; Wasielesky et al., 2006). In the present experiment, there were no aquatic 

animals. Therefore, our results showed the net potential of the system. As shown in Fig 

2, the amount of BFV and TSS in T1 and T2 were the same. The total amount of the BFV 

and the TSS in the T1 and the T2 reached the maximum on day 20. The biofloc particle 

size ranged from 0.3 to 5 mm, similar to the result of Xu et al. (2013), and reached a 

peak on day 20, that can benefit fish and crustaceans in cultures. The same results were 

also obtained by Wang et al. (2016).  

By adding glucose to the water even in the zero-water exchange applied in this 

system, water quality was significantly improved, the ammonia nitrogen, NO2--N 

remained at a relatively low level  demonstrating that this may be more widely used in 

aquaculture. In this study, the total abundance of phytoplankton first increased and then 

decreased in the treatment groups, in particular, the change of the number of 

cyanobacteria and green algae in the experiment suggesting that the biological 

flocculation had an inhibitory effect on cyanobacteria and green algae in the water 

column.   

Zooplankton is an important part of aquaculture water. In T1 and the T2, the number 

of protozoan and copepods first increased and then decreased. In T3 and the control, 

they were significantly lower than in T1 and T2. This suggests that the addition of 

carbohydrates to the water promoted the growth of heterotrophic microorganisms 

(Schneider et al. 2006), and increased the microbial community on which heterotrophic 

microorganisms feed   (Avnimelech, 1999; Crab et a1., 2009).  
 

Conclusion 

The results of this study indicated that biofloc is formed by adding glucose into the 

culture water. Bacillus subtilis shortens the time of mature biofloc formation by about 5 

days. The NH4
+-N and NO2--N levels in the water column decreased and the number of 

cyanobacteria and green algae were inhibited, while the number of zooplankton such as 

rotifers increased. The results of this experiment broadened the basis and value of 

similar systems. 
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