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Abstract 

The anthropogenic impact of effluents and indiscriminate use of antibiotics in aquaculture 
promotes the emergence and proliferation of antibiotic resistant (ABR) bacteria. 
Comparative total bacterial and ABR counts were determined from 3 locations of the 
Cadimahan river of Capiz province, Philippines. The upstream station showed lower total 
bacterial but higher ABR counts, which is the inverse of the downstream station which 
showed higher total bacterial but lower ABR counts. The ABR counts accounted for 
0.0173%, 0.0043% and 0.0002% of the total bacterial counts for upstream, midstream, 
and downstream, respectively, showing a strong inverse correlation of -0.84 in the Pearson 
correlation coefficient. This result suggests a remediating effect potentially mediated by 
microbial dynamics in the Mangrove-riverine system. 
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Introduction 
CoVID-19 has shown how devastating a global pandemic can be to loss of lives, global 
economic output, and productivity (Turner, 2014)⁠. One potential cause of a pandemic may 
be the resurgence of highly pathogenic bacteria due to antibiotic resistance (ABR) 
(Anderson, 1999)⁠; a subset of antimicrobial resistance (AMR), which has been declared by 
the World Health Organization as one of the top 10 global public health threats facing 
humanity (“Antimicrobial resistance,” n.d.) ⁠. Anthropogenic impact of effluents from human 
habitation and human activities like aquaculture are some of the sources of antibiotics in 
the environment which in turn drive up occurrence of ABR ⁠(Tipmongkolsilp et al., 2012; 
Zdanowicz et al., 2020; Canteón, 2009)⁠.  
 In aquaculture, antibiotics has been used to treat diseases, optimize feed efficiency and 
improve growth rate (Sarmah et al., 2006). Majority of the antibiotics introduced in 
aquaculture are not assimilated by the culture organisms and are released into the 
environment (Thuy et al., 2011)⁠. The presence of antibiotics below lethal concentrations 
promotes resistance while changes in the bacterial community results in the alteration of 
the biogeochemical cycles (Balcázar et al., 2015)⁠. From an environmental perspective, 
aquatic ecosystems are major reservoirs of resistant bacteria and genes because of the 
uncontrolled use of antibiotics and lack of treatment facilities for effluents (Michael et al., 
2014)⁠; however, a healthy ecosystem may attenuate the presence of these antibiotic 
resistant microorganisms (Levy, 2007)⁠ by restoring the competitive balance between them 
and non-resistant microorganisms.  
 Mangrove forests are important coastal resources that play a major role in socio-
economic development (Kathiresan, 2012)⁠, mitigation of disasters (Osti et al., 2009)⁠ and 
protection of biodiversity (Mmom, 2010). The constant change in environmental factors 
such as salinity, temperature, and pH, leads to the extreme diversification of microbial 
communities in mangrove areas. Thus, knowledge of microbial activity is important for 
understanding the dynamics of mangrove ecosystems and the formulation of effective 
management strategies (Holguin et al., 2006). The unique composition of mangrove 
estuaries allows it to act as catch basins for anthropogenic wastes without suffering 
disturbance in its fundamental structure and functions (Bouchez et al., 2013)⁠. Toxic 
chemicals that are released into estuaries endanger coastal ecosystems and human health. 
Besides conventional pollutants such as organochlorine, organophosphates, and heavy 
metals, antibiotics and antibiotic resistant genes (ARGs) are also identified as contaminants 
that affect stability of coastal ecosystems and have become a serious issue (Zhang et al., 
2015)⁠(Zhu et al., 2017) ⁠. 
 The Cadimahan-Libutong river covers approximately sixteen hectares of area, 
surrounded by seven barangays (an administrative division in the Philippines equivalent to 
a village, district, or ward). It is recognized as one of the biggest among the sixteen river 
systems in Capiz province. Aquaculture in the form of fish cages and fishponds are 
prevalent. In the Capiz province, total Aquaculture in 2019 was tagged at 62.78 thousand 
MT (CAPIZ FISHERY PRODUCTION IN 2019, 2020)⁠. Local conservation and reforestation of 
the mangrove area has also been a highlight of the river system (Primavera et al., 2012) ⁠.   
 It is universally acknowledged that ABR bacteria are present in the natural 
environment. Conditions in aquatic ecosystems promote the acquisition and dissemination 
of ARGs (Zhu et al., 2017)⁠. The presence of these contaminants in the Cadimahan-Libutong 
river would suggest a fundamental, functional, and spatiotemporal shift in the microbial 
community. The main objectives of the current study are to quantify the presence of 
ampicillin-resistant bacteria in the Cadimahan-Libutong river as an indicator and a proxy 
for ABR bacteria and to explore spatial dynamics between total and ABR bacteria. 
    

Materials and Methods 
The study was conducted along the Cadimahan River, Capiz Province, Panay Island, 
Republic of the Philippines on October 2019. Sampling was conducted only once for 
gathering preliminary field data to determine antibiotic resistance in the area. Three 
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sampling points collected mid-morning during low tide were selected, representing the 
upstream, midstream and downstream regions of the river (Figure 1). The Upstream (US) 
point was located at 11°35’37.6” N 122°44’28.1” E; Mid-stream (MS) was 11°35’47.5” N 
122°43’57.8” E; Downstream (DS) was 11°36’04.0” N 122°43’4104” E.   
 Water samples were collected and stored on ice. For each sample point, salinity, 
temperature, pH and dissolved oxygen concentrations were recorded. A 9 mL aliquot of 
the water was immediately treated with 1ml of antibiotic solution of 5ug/ml ampicillin 
(ABPC) for a total concentration of 0.5ug/ml ABPC. Ampicillin was chosen as the proxy for 
studying antibiotic resistance because it is commonly used in the area, it is a broad-
spectrum antibiotic and is stable against hydrolysis. An untreated sample was collected 
and stored in the same conditions (Figure 2). 
 Modified marine nutrient agar was formulated using 1.5% agar in nutrient medium 
composed of polypeptone 5g/L and yeast extract 1g/L in UV treated seawater. The medium 
was autoclaved for sterility and poured on petri plates. Dried plates were stored in 4°C 
until use. 
 Samples were serially diluted and spread out on prepared modified agar plates in 
triplicates. The development of bacterial colonies was monitored for a 7-day period. 
Individual bacteria were not further examined; only collective microbial content for both 
antibiotic-treated and untreated samples were considered. The ABPC-resistant count was 
divided by 0.9 to compensate for the introduction of antibiotics. 
 Results were parsed through a Pearson correlation coefficient test (Pearson, 1895)⁠ 
which measures the strength of the relationship between two variables and their 
association with each other. 
 

 
Figure 1 Map of the sampling location. Three locations were sampled in Cadimahan River, 
Roxas Province, Panay Island, Republic of the Philippines. The Upstream (US) point was 
located at 11°35’37.6”N 122°44’28.1”E; Mid-stream (MS) was 11°35’47.5”N 
122°43’57.8”E; Downstream (DS) was 11°36’04.0”N 122°43’4104”E. 
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Figure 2 Sampling method. Two samples were retrieved from each sampling point. One sample was 
treated with an antibiotic, another sample was not. Samples were serially diluted to quantify the 
viable bacterial count. 

 
Results 

The Cadimahan-Libutong River is a sedimentary environment characterized by dark fine to 
muddy substrates. It is an intertidal mangrove system suggesting that there are frequent 
fluctuations in temperature, salinity, dissolved oxygen, and other physico-chemical 
parameters. The 6 genera of mangroves found in the riverine ecosystem are Rhizophora, 
Avicennia, Bruguiera, Excoecaria, Sonneratia, and Nypa. The area is under anthropogenic 
pressure due to various human activities. In the upstream station, there is an open 
drainage system coming from 2 densely populated residential areas with no provisions for 
the treatment of human wastes and wastewater. The midstream station was predominantly 
used for the culture of oysters and brackish water fish species. Culture of marine fish 
species and artisanal fishing activities were observed more in the downstream station. The 
presence of ABPC-resistant bacteria was established in all three stations.  
 Water temperature was uniform at 320C in all three sampling stations. There was a 
difference in salinity, as expected. Lowest salinity was taken upstream at 22 ppt followed 
by 26 ppt midstream and 28 ppt downstream. Upstream and midstream stations had the 
same pH level at 7.5 while the pH level downstream was 7.7. A decreasing trend was 
observed in terms of dissolved oxygen concentrations with the highest being 4.92 ppm 
upstream, followed by 4.76 ppm midstream and 4.23 ppm downstream. 
 Total viable bacterial count increased from 8.0 x107 to 1.8 x108 then to 1.0 x109 as the 
sampling points progressed downriver while antibiotic resistant bacterial viable counts 
decreased from 1.5 x104 to 7.7 x103 then to 2.2 x103 (Figure 3). This is equivalent to 
0.0173%, 0.0043% and 0.0002% of the total viable count for upstream, mid-stream, and 
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downstream, respectively. There was a strong inverse correlation (-0.84 in the Pearson 
correlation coefficient) between total viable bacteria count and antibiotic bacteria viable 
count as the sampling point progressed downriver. The total viable bacterial count had a 
trendline with a slope of 2.3 x 107 exp(+1.204x) with an R2 of 0.943. ABPC had a slope of 
4.5 x 104 exp(-0.973x) with an R2 of 0.973. 
 

 
Figure 3 Total bacterial counts (cfu/ml) and antibiotic resistant bacterial counts (cfu/ml) from three 
locations: Upstream (US), Mid-stream (MS), and Downstream (DS). Values are in logarithmic scale. 
 

 
Discussion 

Although mangrove ecosystems are potential reservoirs for antibiotic resistant genes (Thuy 
et al., 2011)⁠, the rich and diverse microbial ecosystem (Gomes et al., 2011; Thatoi et al., 
2013) may also serve to attenuate total numbers of these antibiotic resistant bacteria 
(Levy, 2007)⁠ that harbor these genes through a competitive balance between them and 
non-resistant microorganisms.    
 In the present study we have established the presence of Ampicillin resistant bacteria 
in upstream, midstream and downstream areas of the Cadimahan River. The river is a 
depositional coastal environment characterized by presence of fine sediments with 
accumulation of organic materials coming from sewage and fish cage operations. 
Sediments in mangrove communities consist of river and marine alluvium deposit resulting 
in dark, silty-clay with high organic matter and salts (Hossain and Nuruddin, 2016)⁠⁠. The 
river previously had a problem with heavy siltation caused by the congestion of structures, 
such as fish cages, gill nets and bamboo stakes for oyster culture, that obscured the 
navigational paths and water flow. A rehabilitation effort was pushed for the clearing of the 
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river and the banning of the use of bamboo stakes. This rehabilitation effort also introduced 
mangrove reforestation in certain areas (Bering, 2010)⁠⁠. 
 The presence of antibiotic resistance genes has been reported in mangrove systems 
(Ceccon et al., 2019; Imchen and Kumavath, 2020) ⁠⁠, but no spatio - temporal relationships 
have been demonstrated to surmise the role of mangrove riverine systems on the variance 
of antibiotic resistance bacteria. A study of microbial communities in a non-mangrove river 
estuary in Malaysia showed elevated levels of antibiotic resistance ESBL-producing bacteria 
in upstream portions of the river. However, the abundance of culturable bacteria were also 
elevated in the upstream portion and no correlation was observed in terms of abundance 
and location (Ho et al., 2021)⁠.  
 Other reported studies focus on ARGs on mangrove systems employed a metagenomics 
approach and focused on coastal and estuarine locations. In Kerala, South India no 
significant pattern of distribution of antibiotic resistant genes were found based on location 
(Imchen et al., 2019) ⁠ and in the Gaoqiao Mangrove Wetland China the authors found no 
significant difference in antibiotic resistant bacteria based on location (Y et al., 2017) ⁠. 
Variations in the distribution of antibiotic resistance may be due to a combination of factors 
such as temperature, tidal flow, surface runoff, agriculture and aquaculture wastes and 
other anthropogenic activities (Huang et al., 2019)⁠.  
 Since other riverine systems do not display these patterns, the currently observed 
reduction of Antibiotic resistant bacteria may be indicative of the remediation effect 
suggested for mangroves (Bouchez et al., 2013). However, more detailed analyses need 
to be done to the tested site and to other locations with varying spatio temporal dynamics 
to more fully understand the interaction of microbial communities in mangrove systems. 
 One of the problems in monitoring and detecting occurrence of antibiotic resistant 
bacteria is cost and accessibility. The method employed is a composite of the standard 
turbimetric assay (Kavanagh, 1968; Nascimento et al., 2020)⁠, in that the antibiotic was 
applied in broth, but quantified using spread plating method. It is a field expedient, rapid, 
high throughput, low-cost approach that has low equipment requirements. It is not meant 
to be a replacement for detailed and stringent approaches such as RAST (Rapid 
Antimicrobial Testing (RAST) recommended by the European Committee on Antimicrobial 
Susceptibility Testing (EUCAST) (Åkerlund et al., 2020; Valentin et al., 2021) which, 
however ideal for medical usage, may not be the best for environmental monitoring 
purposes. Although culture dependent methods exclude viable but non-culturable (VBNC) 
bacteria, and molecular methods can reveal more detail; molecular methods rely on 
expensive equipment that may not be readily available in the field, and may be beyond 
the financial capabilities of some researchers or monitoring agencies especially those in 
poorer countries. 
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