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Abstract 
 

This study aimed to assess the toxicity of ammonia on clam Cyclina sinensis 
and the post-exposure recovery. With increased exposure to TAN, the alkaline 
phosphatase (AKP) activities after exposure showed a trend of growing initially 
and subsequently decreasing, whereas the AKP activities after post-exposure 
recovery showed an increasing trend. The AKP activities after post-exposure 
recovery were significantly higher than those in control. The acid phosphatase 
(ACP) activities in T1 and T2 after post-exposure recovery were higher than 
those in the control, whereas the ACP activities in T3, T4, and T5 after post-
exposure recovery were significantly higher than those in the control. The 
lysozyme (LZM) activities in T1 and T2 after exposure were significantly higher 
than those in control, whereas the LZM activities in T3, T4, and T5 after 
exposure were significantly lower than those in the control. Overall, ACP and 
LZM in the clams exposed to a low level of TAN (≤ 40 mg/L) can recover to the 
normal levels completely. However, a 48h recovery period scarcely seems 
adequate to compensate for AKP, ACP, and LZM activities in the clams exposed 
to a high level of TAN (> 40 mg/L). 
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Introduction 
 

It is well-known that ammonia is one of the most severe environmental pollutants in 
aquaculture systems (Ge et al., 2021a). Ammonia usually exists in two chemical forms: 
ionized ammonium (NH4+) and unionized ammonia (NH3). As NH3 is of strong fat solubility, 
it can damage gills and other tissues of marine animals to varying extents (Foss et al., 
2009). Studies have demonstrated that ammonia accumulation usually has a negative 
effect on marine animals (Florence et al., 2015; Gao et al., 2016). In severe cases, the 
mortality of cultured marine animals can increase sharply (Wang et al., 2012). Therefore, 
ammonia has been identified as one of the most critical limiting factors for marine animals 
(Ge et al., 2021b).  
 There is growing evidence that environmental pollutants can cause immune system 
disorder in marine animals (Ge et al., 2021b; Sreekakula et al., 2019). Diverse studies 
have indicated that alkaline phosphatase (AKP), acid phosphatase (ACP), and lysozyme 
(LZM) play key functions in the nonspecific immune system (Chen et al., 2019; Liu et al., 
2004; Yuan et al., 2020). As important phosphatase enzymes, ACP and AKP can resist 
pathogens by releasing attached phosphoryl groups from pathogenic bacteria and storing 
them in lysosomes (Long et al., 2021; Xu et al., 2020). LZM is one of the most important 
regulators of innate immune responses, which can attack the peptidoglycan layer of the 
bacterial cells (Bayarri et al., 2014). AKP, ACP, and LZM, which are involved in various 
metabolic processes, have been determined to be indicators to reveal the stress responses 
of marine animals to the growth environment (Chen et al., 2019; Xu et al., 2020). Effects 
of ammonia on immune responses of marine animals have drawn a lot of attention recently 
because immunity variations under environmental stresses are bound up with the 
occurrence and development of fish diseases (Ge et al., 2021a; Zhang et al., 2019). 
However, studies on the acute toxicity of ammonia on nonspecific immunity in mollusk are 
still essential to reveal the sensitivity to this relevant contaminant. 
 The clam Cyclina sinensis is an economically important marine clam (Ni et al., 2020). 
And the clam distributes widely in coastal areas of East Asia. Because of its rapid growth 
rate, delicious taste, and resistance to diseases, clam farming contributes a lot to 
sustainable clam industry development in China (Ni et al., 2021). However, environmental 
stresses can inhibit mollusks' physiological and immune systems, which can severely 
influence marine animals (Ching et al., 2009). Previous studies have revealed that toxic 
ammonia affects the physiological reactions in marine animals (Gao et al., 2016; Yang et 
al., 2010). Nevertheless, the actual toxic threshold varies greatly in different marine 
animals (Foss et al., 2009). Furthermore, whether the damage caused by ammonia 
exposure can recover to the original level remains unclear (Zhang et al., 2019). 
 Generally, the first toxicological evaluation of a specific combination “organism + 
toxicant” is to determine the average lethal concentration levels (LC50) (Zhang et al., 
2019). It is well accepted that LC50 value can be calculated by acute toxicity experiments 
of short duration, typically 48 to 96 h (Acar et al., 2018). However, traditional toxicological 
researches mainly concentrate on the dose-effect relationship between the pollutants and 
organisms at the given exposure time (Lia et al., 2014). How the poisonous effect of 
pollutants varies after exposure is often ignored (Chen and Guo, 2015). Therefore, the 
toxic effect during the post-exposure period should also be taken into consideration to 
evaluate the toxic effect of pollutants on organisms comprehensively. Within this context, 
firstly, we determined the median lethal concentrations (LC50) and safe concentration (SC) 
of TAN and NH3 for C. sinensis. And then, we assess the effect of acute ammonia exposure 
and post-exposure recovery on nonspecific immunity in C. sinensis. The results may help 
to reveal the underlying relationship between immune response and ammonia toxicity. 
    

Materials and Methods 
 
Clam source, nursery and feeds 
 Healthy clam C. sinensis (average body weight 3.38± 0.21g) were obtained from 
Lianyungang Zhongchuang Aquaculture Company. Test clam C. sinensis were acclimated 
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in polyvinyl chloride tanks (45cm× 30cm× 40cm) containing 30L well-aerated sand-filtered 
seawater (temperature: 24°C, salinity: 21ppt, pH: 8.0, dissolved oxygen: 5.3 mg/L, and 
TAN<0.01 mg/L) for ten days before the experiment. Only healthy C. sinensis of uniform 
size without pathological signs were selected as test subjects. During the adaptation period, 
test clams were fed twice with microalgae. Feeding was ceased one day before the 
experiment.  
 The stock solution of high purity ammonium chloride (NH4Cl) (10g/L) was diluted to the 
desired concentration of total ammonia (TAN). During the exposure test, the TAN level was 
measured every 12h with a spectrophotometer (DR 3800, Hach) followed by Ge et al. 
(2021). To maintain the level of TAN, 100% of seawater was renewed every 12h, and 
seawater contained the designed concentration of TAN while guaranteeing the other water 
quality stabilization. During the exposure test, the pH was monitored every 12h using a 
portable pH meter (PHB-5, Leica, China), and the level was maintained within the range of 
the control group (8.0 ± 0.3) with diluted HCl and, or KOH (Egnew et al., 2019). 
 
Experimental design 
Preliminary experiment 
 Preliminary experiments were conducted to determine the LC50 concentration of 
ammonia for C. sinensis. Firstly, using the probit analysis method (Acar et al., 2018; Fossog 
et al., 2013; Ge et al., 2021b), we evaluated the minimum safe dose (0 lethal 
concentration, MSD) and maximum lethal dose (100% lethal concentration, MLD) were 
75.02 and 375.28 mg/ L, respectively. Then, the desired levels of TAN were set as 75.02, 
125.06, 175.1, 225.14, 275.18, 325.22, and 375.28mg/L. Each treatment was conducted 
in triplicate with a density of 20 individuals per tank. The clam, which cannot close the 
double shell and cannot respond to stimuli, was defined as a dead clam. The dead clam 
was removed from the tanks every six h, and record the numbers of dead clams. Finally, 
the LC50 for clam C. sinensis and the confidence limit of 95% was calculated with Karber’s 
method (Ge et al., 2021a). The level of NH3 was calculated with TAN, pH, and temperature 
of the equation: NH3=TAN/ (10 (p Ka – pH) +1) (Ge et al., 2021a). 
 
Ammonia-N exposure test 
 According to the 48-h LC50 of TAN for clam C. sinensis we determined above, 360 clams 
were selected and divided into six groups with 18 tanks (six groups of three replicate tanks, 
20 individuals per tank) randomly, and exposed to 0 (control), 20 (T1), 40 (T2), 60 (T3), 
80 (T4) and 100 mg (T5) TAN /L, respectively. As marine animals exposed to ammonia for 
48h can lead to severe toxic effects (Ge et al. 2021), the clam was exposed to ammonia 
for 48h. The preliminary experimental results show that some immune parameters in low 
ammonia nitrogen treatment could return to their normal levels in 48h. Therefore, at the 
cessation of ammonia exposure, the clams were moved to the control conditions for 48 h 
(the recovery group). During the test, no feed was supplied. 
 
Hepatopancreas collection and enzyme activity assay 
 Five individuals per tank were randomly collected after exposure and post-exposure 
recovery in each group. As the main target organs impaired by ammonia is the 
hepatopancreas (Ge et al., 2021b), the clam C. sinensis were decontaminated with 70% 
ethanol and then dissected to obtain hepatopancreas tissue immediately with sterile 
scissors. The enzyme activities were determined using diagnosis kits for AKP, ACP, and 
LZM according to the protocol recommended by the manufacturer (Nanjing Jiancheng 
Bioengineering Institute, Nanjing) according to the protocol recommended by the 
manufacturer (Ge et al., 2021a).  
 
Statistical analysis 
 Values were calculated using SPSS 18.0 software. Results were expressed as means ± 
standard deviation. One-way analysis of variance (ANOVA) followed by Duncan’s test was 
conducted to assess the significant differences among treatments (Ge et al., 2019). P < 
0.05 was considered to be statistically different. 
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Results 

 
LC50 and SC 
 Exposed to ammonia, the mortality of C. sinensis increased along with the increasing 
concentration of ammonia（Table 1). The LC50 in 24, 48, 72, and 96h of TAN were 181.30, 
118.17, 105.03, and 80.72 mg/L, respectively. The LC50 in 24, 48, 72, and 96h of NH3 
were 9.00, 5.87, 5.22, and 4.01 mg/L, respectively. The 96h safe concentration of TAN 
and NH3 for the clams was 8.07 and 0.40, respectively. 
 
Table 1 The LC50 and safe concentration (SC) for clam C. sinensis 
Time LC50 of TAN (mg/L) LC50 of NH3 (mg/L) SC of TAN (mg/L) SC of NH3 (mg/L) 
24 181.30 9.00 18.13 0.90 
48 118.17 5.87 11.82 0.59 
72 105.03 5.22 10.50 0.52 
96 80.72 4.01 8.07 0.40 

 
Effect of acute ammonia exposure on nonspecific immunity enzyme activities in C. sinensis 
 The AKP activities in the hepatopancreas tissue of clam C. sinensis after exposure 
showed a trend of increasing firstly and then decreasing along with the increasing 
concentration of ammonia (Figure 1). The AKP activities in the groups of exposure were 
significantly higher than those in the control (P<0.05). The AKP activities in the recovery 
groups showed an increasing trend along with the increasing concentration of ammonia, 
and the AKP activities in the recovery groups were significantly higher than those in the 
control (P<0.05). The AKP activities in the exposure groups were significantly higher than 
those in the group of post-exposure recovery (P<0.05). 
 

 

 
Figure 1 The AKP activity in the hepatopancreas tissue of clam C. sinensis after exposed to ammonia. 
The same lowercase means no significant difference in different exposure concentration of ammonia 
at the same time (exposure for 48h or post-exposure recovery for 48h), otherwise significant 
differences (P <0.05). Significant differences in the same concentration of ammonia between 
exposure for 48h and post-exposure recovery for 48h are indicated by asterisks (* P<0.05, ** 
P<0.01).  
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Effect of salinity on IBR of the clams reared in different salinities 
 The IBR values were calculated using the gill enzyme activities (LZM, NKA, SOD and 
GPT) (Table 2). The IBR values of the clams had a tendency to increase with salinity 
decreased and they were 11.28, 3.40 and 2.85 in 10‰, 20‰ and 30‰, respectively. 

The biomarker star chart for IBR of the clams reared in different salinities (LZM, NKA, 
SOD and GPT in gills) as is shown in Figure 3 and the IBR value of the clams under the 
salinity stress was the area formed by each radius coordinate. In group 10‰, GPT made 
the biggest contributor to IBR, followed by LZM, NKA and SOD. In group 20‰, LZM made 
the minimum contributor, followed by SOD and the contributions of GPT and NKA were 
similar. In group 20‰, GPT made the minimum contributor, and the other three indicators 
were similar. 
 As shown in Figure 2, the ACP activities after exposure increased significantly along 
with the increasing concentration of ammonia. The AKP activities in the groups of exposure 
were significantly higher than those in the control (P<0.05). The ACP activities in the 
recovery groups increased along with the exposure concentration of ammonia, whereas 
they were significantly lower than in the groups of exposure (P<0.05). The ACP activities 
in T1 and T2 after recovery were higher than those in the control (P>0.05), whereas the 
ACP activities in T3, T4, and T5 after recovery were significantly higher than those in the 
control (P<0.05). 
 The LZM activities after exposure showed a trend of increasing firstly and then 
decreasing along with the increasing concentration of ammonia (Figure 3). The LZM 
activities in T1 and T2 after exposure were significantly higher than those in the control 
(P<0.05), whereas the LZM activities in T3, T4, and T5 after exposure were significantly 
lower than those in the control (P<0.05). The LZM activity in T1 after recovery was 
significantly higher (P<0.05) than that in the control, whereas the LZM activity in T3, T4, 
and T5 after recovery was significantly lower (P<0.05). 
 

 
Figure 2 The ACP activity in the hepatopancreas tissue of clam C. sinensis after exposed to 
ammonia.The same lowercase means no significant difference in different exposure concentration of 
ammonia at the same time (exposure for 48h or post-exposure recovery for 48h), otherwise 
significant differences (P <0.05). Significant differences in the same concentration of ammonia 
between exposure for 48h and post-exposure recovery for 48h are indicated by asterisks (* P<0.05, 
** P<0.01).  
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Figure 3 The LZM activity in the hepatopancreas tissue of clam C. sinensis after exposed to ammonia. 
The same lowercase means no significant difference in different exposure concentration of ammonia 
at the same time (exposure for 48h or post-exposure recovery for 48h), otherwise significant 
differences (P <0.05). Significant differences in the same concentration of ammonia between 
exposure for 48h and post-exposure recovery for 48h are indicated by asterisks (* P<0.05, ** 
P<0.01).  

 
Discussion 

 
Ammonia is harmful to marine animals (Florence et al., 2015; Lu et al., 2016). The toxic 
effect of ammonia on marine animals has attracted wide attention. Lots of studies have 
revealed the toxicity of ammonia to mollusks, such as Asian clam Corbicula fluminea 
(Zhang et al., 2019) and clam Ruditapes philippinarum (Cong et al., 2019). Ammonia 
accumulation in water may be a severe threat to marine animals (Ge et al., 2021b). In our 
present research, the 96h safe concentration of TAN and NH3 for the clam was 8.07 and 
0.40, respectively. They are relatively higher than the SC of other marine animals, such as 
Scylla serrate (Romano and Zeng, 2007) and Litopenaeus vannamei (Lu et al., 2016). This 
is probably because the bivalve mollusks have shells and uniquely efficient mechanisms of 
detoxification metabolism (Zhang et al., 2019). Generally, the damage aggravated along 
with the increasing environmental stressor concentration (Ge et al., 2021b). Cong et al. 
(2017) reported that the clam R. philippinarum exposed to the level of 0.5 mg/L ammonia 
might suffer severe effects, including gill damage and neurotoxicity. James & Diane 
reported that the LC50-96h for the survival of clam Spisula solidissima was 10.6 mg/L TAN 
and 0.53 mg/L NH3 (James & Diane, 2011). In the present study, the average lethal 
concentration levels increased along with the death time reduced. Elevated ammonia in 
water can accelerate the accumulation of ammonia uptake across the gill epithelium. 
However, the accumulation of ammonia in organisms usually causes very high ammonia 
levels in the body fluids, and even leads to death (Sreekakula et al., 2019). 

AKP is a lysosomal enzyme and plays an essential role in the nonspecific immune system 
by catalyzing the hydrolysis of various phosphate-containing compounds in the alkaline 
environment (Gobi et al., 2016). In the present research, the AKP activities after exposed 
to ammonia showed a trend of increasing firstly and then decreasing. The result indicates 
that ammonia exposure can influence AKP activities in C. sinensis. Some previous studies 
have revealed that low levels of potentially environmental toxic pollutants, bacteria, or 
viruses could cause stimulatory effects on the immune system (Stebbing, 1982; Wai-San 
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et al., 2011). This phenomenon is so-called “hormesis” (Stebbing, 1982). That’s possible 
because environmental chemicals could inhibit or induce mRNA expression of innate 
immune-related genes and cytokines and further result in the change of immune enzymes, 
such as LZM and AKP (Jia et al., 2014; Rogers et al., 2013). In the present research, The 
AKP activities in the recovery groups showed an increasing trend along with the increasing 
concentration of ammonia, and the AKP activities in the recovery groups were significantly 
higher than those in the control. This indicated that AKP activity couldn’t recover completely 
after being transferred to pristine seawater for 48h for those exposed to a high level of 
ammonia. Compared to the group of exposure, the AKP activity in the group of post-
exposure recovery has recovered somewhat. However, it is more difficult for the clam 
exposed to a high level of ammonia (c > 40mg/L) to resume its original activity than those 
in a low level of ammonia (c ≤ 40mg/L). This is probably because that the high level of 
potentially toxic agents caused immune system damage irreparably, or maybe it is because 
of a 48h recovery insufficient recovery time (Yang et al., 2010).  

ACP is one of the marker enzymes of macrophage lysosome in organisms, and ACP plays 
an essential role by destroying and eliminating foreign bodies in the clam nonspecific 
immunity (Xia and Wu, 2018). In the present study, the ACP activities in clam C. sinensis 
after exposure increased along with the increasing concentration of ammonia. The result 
showed that ammonia exposure could cause stimulatory effects on ACP activity. During the 
same recovery time, the ACP activities in the low level of ammonia (c ≤ 40mg/L) could 
resume their original level. Whereas the ACP activities in a high level of ammonia (c > 
40mg/L) after post-exposure recovery were significantly higher than those in the control. 
This indicated that ACP activity in the clam which exposed to the lower concentration of 
ammonia (c ≤ 40mg/L) could recover in 48h. It is possibly because of overcompensation. 
The occurrence of overcompensation response of exceeding compensation after the 
organism suffered damaging stress (Xie et al., 2012).  

As an important hydrolytic enzyme, LZM could kill bacteria by destroying their cell walls 
(Bayarri, 2014). Divers studies indicated that ammonia exposure could decrease humoral 
immune responses of aquatic animals, such as bacteriolytic (Yue et al., 2010). In the 
present research, the LZM activities after exposure showed a trend of increasing initially 
and subsequently decreasing along with the increasing concentration of ammonia. It 
indicated that a low level of ammonia exposure could cause stimulatory effects on LZM 
activity, whereas a high level of ammonia exposure could cause inhibitory effects on LZM 
activity. LZM is an essential regulator of innate immune responses, and high-level activity 
will help to destroy bacterial cells (Jash & Kumar, 2014). Compared to the control, the LZM 
activity in T1 after post-exposure recovery, indicating that a low level of ammonia stress 
induces overcompensation (Xie et al., 2012). The LZM activity in T2 was lower, indicating 
that LZM activity can resume its original level. The LZM activities in groups exposed to the 
high level of ammonia (c > 40mg/L) after post-exposure recovery were significantly lower 
than those in the control, indicating that LZM activity in the clam can’t recover from 
ammonia post-exposure recovery in 48h. This is possibly because that the mechanism of 
LZM synthesis in the clam exposed to a high level (c > 40mg/L) was inhibition, which might 
even lead to irreversible damage (Xu et al., 2020; Oliveira et al., 2018). 

 
Conclusion 

 
In conclusion, the LC50 of TAN for the clam C. sinensis after 24, 48, 72, and 96h were 
181.30, 118.17, 105.03, and 80.72 mg/L, respectively. Chronic ammonia exposure for 48h 
can cause a rise in AKP and ACP activities. However, it causes a reduction in LZM activity. 
After post-exposure recovery for 48h, activities of ACP and LZM in the clams exposed to a 
low level of ammonia (≤ 40mg/L) can recover to the normal levels completely, whereas a 
48h recovery period scarcely seems adequate to compensate for AKP, ACP, and LZM 
activities in the clams exposed to a high level of ammonia of TAN (> 40mg/L). 
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